18 research outputs found

    Atomic structure of Ge quantum dots on the Si(001) surface

    Full text link
    In situ morphological investigation of the {105} faceted Ge islands on the Si(001) surface (hut clusters) have been carried out using an ultra high vacuum instrument integrating a high resolution scanning tunnelling microscope and a molecular beam epitaxy vessel. Both species of hut clusters--pyramids and wedges--were found to have the same structure of the {105} facets which was visualized. Structures of vertexes of the pyramidal clusters and ridges of the wedge-shaped clusters were revealed as well and found to be different. This allowed us to propose a crystallographic model of the {105} facets as well as models of the atomic structure of both species of the hut clusters. An inference is made that transitions between the cluster shapes are impossible.Comment: 6 pages, 6 figures. Accepted to JETP Letters (publication date 2010-03-25

    Nucleation of Ge clusters at high temperatures on Ge/Si(001) wetting layer

    Full text link
    Difference in nucleation of Ge quantum dots during Ge deposition at low (< 600C) and high (> 600C) temperatures on the Si(001) surface is studied by high resolution scanning tunneling microscopy. Two process resulting in appearance of {105}-faceted clusters on the Ge wetting layer have been observed at high temperatures: Pyramids have been observed to nucleate via the previously described formation of strictly determined structures, resembling blossoms, composed by 16 dimers grouped in pairs and chains of 4 dimes on tops of the wetting layer M x N patches, each on top of a separate single patch, just like it goes on at low temperatures; an alternative process consists in faceting of shapeless heaps of excess Ge atoms which arise in the vicinity of strong sinks of adatoms, such as pits or steps. The latter process has never been observed at low temperatures; it is typical only for the high-temperature deposition mode.Comment: 13 pages, 4 figures; a revised versio

    Application of hydrogenation to low-temperature cleaning of the Si(001) surface in the processes of molecular-beam epitaxy: Investigation by STM, RHEED and HRTEM

    Full text link
    Structural properties of the clean Si(001) surface obtained as a result of low-temperature (470--650C) pre-growth annealings of silicon wafers in a molecular-beam epitaxy chamber have been investigated. To decrease the cleaning temperature, a silicon surface was hydrogenated in the process of a preliminary chemical treatment in HF and NH_4F aqueous solutions. It has been shown that smooth surfaces composed by wide terraces separated by monoatomic steps can be obtained by dehydrogenation at the temperatures > 600C, whereas clean surfaces obtained at the temperatures < 600C are rough. It has been found that there exists a dependence of structural properties of clean surfaces on the temperature of hydrogen thermal desorption and the process of the preliminary chemical treatment. The frequency of detachment/attachment of Si dimers from/to the steps and effect of the Ehrlich-Schwoebel barrier on ad-dimer migration across steps have been found to be the most probable factors determining a degree of the resultant surface roughness.Comment: 8 pages, 8 figures; version accepted to J. Appl. Phy

    Absorption of Terahertz Radiation in Ge/Si(001) Heterostructures with Quantum Dots

    Full text link
    The terahertz spectra of the dynamic conductivity and radiation absorption coefficient in germanium-silicon heterostructures with arrays of Ge hut clusters (quantum dots) have been measured for the first time in the frequency range of 0.3-1.2 THz at room temperature. It has been found that the effective dynamic conductivity and effective radiation absorption coefficient in the heterostructure due to the presence of germanium quantum dots in it are much larger than the respective quantities of both the bulk Ge single crystal and Ge/Si(001) without arrays of quantum dots. The possible microscopic mechanisms of the detected increase in the absorption in arrays of quantum dots have been discussed.Comment: 9 pages, 4 figures; typos correcte
    corecore