133 research outputs found
B7 costimulation and intracellular indoleamine-2,3-dioxygenase (IDO) expression in peripheral blood of healthy pregnant and non-pregnant women.
BACKGROUND: B7 costimulatory molecules are expressed on antigen presenting cells (APCs) and are important regulators of T cell activation. We investigated the role of the B7 family of costimulatory molecules in the development of the systemic maternal immune tolerance during healthy pregnancy (HP). We also aimed to investigate the intracellular expression of indoleamine-2,3-dioxygenase (IDO) and plasma levels of tryptophane (TRP), kynurenine (KYN) and kynurenic acid (KYNA), important molecules with immunoregulatory properties, in order to describe their potential contribution to the pregnancy-specific maternal immune tolerance. METHODS: We determined the frequency of activated (CD11b+) monocytes expressing B7-1, B7-2, B7-H1, and B7-H2, and that of T cells and CD4+ T helper cells expressing CD28, CTLA-4, PD-1, and ICOS in peripheral blood samples of healthy pregnant (HP) and non-pregnant (NP) women using flow cytometry. We also examined the intracellular expression of IDO applying flow cytometry and plasma levels of TRP, KYN and KYNA using high-performance liquid chromatography. RESULTS: A significant increase in the prevalence of CD28+ T cells was observed in HP compared to NP women. At the same time a decrease was shown in the expression of CTLA-4 on these cells. The frequency of CD80+ monocytes was lower in HP women. The prevalence of IDO-expressing T cells and monocytes was higher in HP compared to NP women. Plasma KYN, KYNA and TRP levels were lower, while at the same time, the KYN/TRP ratio was higher in HP than in NP women. CONCLUSIONS: Costimulation via CD28 may not contribute to the immunosuppressive environment, at least in the third trimester of pregnancy. The development of the pregnancy-specific immune tolerance in the mechanism of B7 costimulation may be more related to the altered expression of B7 proteins on APCs rather than that of their receptors on T cells. The elevated intracellular IDO expression in monocytes and T cells, as well as higher plasma enzymatic IDO activity are likely to contribute to the systemic immunosuppressive environment in the third trimester characteristic for healthy gestation
Concentration- and time-dependent effectof aminooxyacetic acidon cortical epileptogenicity
In the present electrophysiological study the effect of aminooxyacetic acid (AOAA) on the cortical epileptogenicity, and on the basic electro-cortical activity was investigated in anesthetized rats.AOAA did not induce spontaneous epileptiform discharges but modified the somato-sensory evoked responses and the cortical epileptogenicity (induced by 4-aminopyridine) in the same manner depending on its concentration. AOAA at low concentrations increased the amplitude of evoked responses and the ipsilateral manifestation of epileptiform activity, however, at high concentrations significantly suppressed both the evoked responses and the induction and expression of seizures discharges. The anticonvulsive effect of AOAA was time-dependent (reached its maximum after 2h AOAA pre-treatment) and reversible. AOAA at low concentrations probably increases the efficacy of the NMDA excitatory system and decreases GABA-synthesis, resulting neuronal hyperexcitation. However, AOAA at high concentrations can lead to an effective cortical inhibition through intra- and extracellular accumulation of GABA. The gradual GABA accumulation - up to a certain level - at the synapses could also explain the time-dependency of the anticonvulsive effect of AOAA
Continuous theta-burst stimulation over the dorsolateral prefrontal cortex inhibits improvement on a working memory task
Abstract Theta-burst stimulation (TBS) over the dorsolateral prefrontal cortex (DLPFC) may be more effective for modulating cortical excitability compared to standard repetitive transcranial magnetic stimulation. However, the impact of intermittent (iTBS) and continuous TBS (cTBS) on working memory (WM) is poorly studied. The aim of our study was to compare the effects of iTBS and cTBS on WM over the left and right DLPFC. iTBS, cTBS or sham stimulation was administered over the right and left hemisphere of fifty-one healthy human subjects. WM was assessed before and after TBS using the 1-back, 2-back, and 3-back tasks. We found classical practice effects in the iTBS and the sham group: WM performance improved following stimulation as measured by the discriminability index. However, this effect could not be observed in the cTBS group. We did not find any hemisphere-dependent effects, suggesting that the practice effect is not lateralized, and TBS affects WM performance in a comparable manner if administered either over the left or the right hemisphere. We propose that our findings represent a useful addition to the literature of TBS-induced effects on WM. Moreover, these results indicate the possibility of clarifying processes underlying WM performance changes by using non-invasive brain stimulation
Kappa free light chains is a valid tool in the diagnostics of MS: A large multicenter study
To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS).We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mixture modeling was used to define a cut-off for KFLC and LFLC indexes.The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI = 4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85; p < 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96; p < 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB.Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS
Kappa free light chains is a valid tool in the diagnostics of MS : A large multicenter study
To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS). We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mixture modeling was used to define a cut-off for KFLC and LFLC indexes. The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI = 4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85; p < 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96; p < 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB. Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS
Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice:Relevance to Psychotic Disorders
BACKGROUND: Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway-which is implicated as dysfunctional in various psychiatric disorders-toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia. METHODS: In the present study, we investigated adaptive-and possibly regulatory-changes in mice with a targeted deletion of Kmo (Kmo-/-) and characterized the kynurenine 3-monooxygenase-deficient mice using six behavioral assays relevant for the study of schizophrenia. RESULTS: Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of schizophrenia- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. Kynurenic acid levels were also increased in these brain regions in Kmo-/- mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo-/- mice exhibited impairments in contextual memory and spent less time than did controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light/dark box. After a D-amphetamine challenge (5 mg/kg, intraperitoneal), Kmo-/- mice showed potentiated horizontal activity in the open field paradigm. CONCLUSIONS: Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders
Distinct cytokine patterns may regulate the severity of neonatal asphyxia
Abstract Background Neuroinflammation and a systemic inflammatory reaction are important features of perinatal asphyxia. Neuroinflammation may have dual aspects being a hindrance, but also a significant help in the recovery of the CNS. We aimed to assess intracellular cytokine levels of T-lymphocytes and plasma cytokine levels in moderate and severe asphyxia in order to identify players of the inflammatory response that may influence patient outcome. Methods We analyzed the data of 28 term neonates requiring moderate systemic hypothermia in a single-center observational study. Blood samples were collected between 3 and 6 h of life, at 24 h, 72 h, 1 week, and 1 month of life. Neonates were divided into a moderate (n = 17) and a severe (n = 11) group based on neuroradiological and amplitude-integrated EEG characteristics. Peripheral blood mononuclear cells were assessed with flow cytometry. Cytokine plasma levels were measured using Bioplex immunoassays. Components of the kynurenine pathway were assessed by high-performance liquid chromatography. Results The prevalence and extravasation of IL-1b + CD4 cells were higher in severe than in moderate asphyxia at 6 h. Based on Receiver operator curve analysis, the assessment of the prevalence of CD4+ IL-1β+ and CD4+ IL-1β+ CD49d+ cells at 6 h appears to be able to predict the severity of the insult at an early stage in asphyxia. Intracellular levels of TNF-α in CD4 cells were increased at all time points compared to 6 h in both groups. At 1 month, intracellular levels of TNF-α were higher in the severe group. Plasma IL-6 levels were higher at 1 week in the severe group and decreased by 1 month in the moderate group. Intracellular levels of IL-6 peaked at 24 h in both groups. Intracellular TGF-β levels were increased from 24 h onwards in the moderate group. Conclusions IL-1β and IL-6 appear to play a key role in the early events of the inflammatory response, while TNF-α seems to be responsible for prolonged neuroinflammation, potentially contributing to a worse outcome. The assessment of the prevalence of CD4+ IL-1β+ and CD4+ IL-1β+ CD49d+ cells at 6 h appears to be able to predict the severity of the insult at an early stage in asphyxia
Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis
Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness
- …