350 research outputs found

    Holographic Superconductors with Lifshitz Scaling

    Full text link
    Black holes in asymptotically Lifshitz spacetime provide a window onto finite temperature effects in strongly coupled Lifshitz models. We add a Maxwell gauge field and charged matter to a recently proposed gravity dual of 2+1 dimensional Lifshitz theory. This gives rise to charged black holes with scalar hair, which correspond to the superconducting phase of holographic superconductors with z > 1 Lifshitz scaling. Along the way we analyze the global geometry of static, asymptotically Lifshitz black holes at arbitrary critical exponent z > 1. In all known exact solutions there is a null curvature singularity in the black hole region, and, by a general argument, the same applies to generic Lifshitz black holes.Comment: 23 pages, 4 figures; v2: added references; v3: matches published versio

    String Thermalization at a Black Hole Horizon

    Full text link
    Susskind has recently shown that a relativistic string approaching the event horizon of a black hole spreads in both the transverse and longitudinal directions in the reference frame of an outside observer. The transverse spreading can be described as a branching diffusion of wee string bits. This stochastic process provides a mechanism for thermalizing the quantum state of the string as it spreads across the stretched horizon.Comment: 14 pages, latex, SU-ITP-94-4, NSF-ITP-94-1

    Constructing a counterexample to the black hole complementarity

    Full text link
    We propose a regular black hole whose inside generates a de Sitter space and then is finally frustrated into a singularity. It is a modified model which was suggested originally by Frolov, Markov, and Mukhanov. In our model, we could adjust a regular black hole so that its period before going into the extreme state is much longer than the information retention time. During this period an observer could exist who observes the information of the Hawking radiation, falls freely into the regular center of the black hole, and finally meets the free-falling information again. The existence of such an observer implies that the complementary view may not be consistent with a regular black hole, and therefore, is not appropriate as a generic principle of black hole physics.Comment: 8 pages, 5 figure

    AdS/CFT and the Information Paradox

    Get PDF
    The information paradox in the quantum evolution of black holes is studied within the framework of the AdS/CFT correspondence. The unitarity of the CFT strongly suggests that all information about an initial state that forms a black hole is returned in the Hawking radiation. The CFT dynamics implies an information retention time of order the black hole lifetime. This fact determines many qualitative properties of the non-local effects that must show up in a semi-classical effective theory in the bulk. We argue that no violations of causality are apparent to local observers, but the semi-classical theory in the bulk duplicates degrees of freedom inside and outside the event horizon. Non-local quantum effects are required to eliminate this redundancy. This leads to a breakdown of the usual classical-quantum correspondence principle in Lorentzian black hole spacetimes.Comment: 16 pages, harvmac, reference added, minor correction
    • …
    corecore