116 research outputs found

    Magnetic patterning of (Ga,Mn)As by hydrogen passivation

    Full text link
    We present an original method to magnetically pattern thin layers of (Ga,Mn)As. It relies on local hydrogen passivation to significantly lower the hole density, and thereby locally suppress the carrier-mediated ferromagnetic phase. The sample surface is thus maintained continuous, and the minimal structure size is of about 200 nm. In micron-sized ferromagnetic dots fabricated by hydrogen passivation on perpendicularly magnetized layers, the switching fields can be maintained closer to the continuous film coercivity, compared to dots made by usual dry etch techniques

    Macrospin limit and configurational anisotropy in nanoscale Permalloy triangles

    Full text link
    In Permalloy submicron triangles, configurational anisotropy - a higher-order form of shape anisotropy - yields three equivalent easy axes, imposed by the structures' symmetry order. Supported by micromagnetic simulations, an experimental method was devised to evaluate the nanostructure dimensions for which a Stoner-Wohlfarth type of reversal could be used to describe this particular magnetic anisotropy. In this regime, a straightforward procedure using an in-plane rotating field allowed us to quantify experimentally the six-fold anisotropy fields for triangles of different thicknesses and sizes

    Acoustic solitons: A robust tool to investigate the generation and detection of ultrafast acoustic waves

    Get PDF
    International audienceSolitons are self-preserving traveling waves of great interest in nonlinear physics but hard to observe experimentally. In this report an experimental setup is designed to observe and characterize acoustic solitons in a GaAs(001) substrate. It is based on careful temperature control of the sample and an interferometric detection scheme. Ultrashort acoustic solitons, such as the one predicted by the Korteweg–de Vries equation, are observed and fully characterized. Their particlelike nature is clearly evidenced and their unique properties are thoroughly checked. The spatial averaging of the soliton wave front is shown to account for the differences between the theoretical and experimental soliton profile. It appears that ultrafast acoustic experiments provide a precise measurement of the soliton velocity. It allows for absolute calibration of the setup as well as the response function analysis of the detection layer. Moreover, the temporal distribution of the solitons is also analyzed with the help of the inverse scattering method. It shows how the initial acoustic pulse profile which gives birth to solitons after nonlinear propagation can be retrieved. Such investigations provide a new tool to probe transient properties of highly excited matter through the study of the emitted acoustic pulse after laser excitation

    Field-induced domain wall propagation: beyond the one-dimensional model

    Full text link
    We have investigated numerically the field-driven propagation of perpendicularly magnetized ferromagnetic layers. It was then compared to the historical one-dimensional domain wall (DW) propagation model widely used in spintronics studies of magnetic nanostructures. In the particular regime of layer thickness (h) of the order of the exchange length, anomalous velocity peaks appear in the precessional regime, their shape and position shifting with h. This has also been observed experimentally. Analyses of the simulations show a distinct correlation between the curvature of the DW and the twist of the magnetization vector within it, and the velocity peak. Associating a phenomenological description of this twist with a four-coordinate DW propagation model, we reproduce very well these kinks and show that they result from the torque exerted by the stray field created by the domains on the twisted magnetization. The position of the peaks is well predicted from the DW's first flexural mode frequency, and depends strongly on the layer thickness. Comparison of the proposed model to DW propagation data obtained on dilute semiconductor ferromagnets GaMnAs and GaMnAsP sheds light on the origin of the measured peaks

    Effect of picosecond strain pulses on thin layers of the ferromagnetic semiconductor (Ga,Mn)(As,P)

    Full text link
    The effect of picosecond acoustic strain pulses (ps-ASP) on a thin layer of (Ga,Mn)As co-doped with phosphorus was probed using magneto-optical Kerr effect (MOKE). A transient MOKE signal followed by low amplitude oscillations was evidenced, with a strong dependence on applied magnetic field, temperature and ps-ASP amplitude. Careful interferometric measurement of the layer's thickness variation induced by the ps-ASP allowed us to model very accurately the resulting signal, and interpret it as the strain modulated reflectivity (differing for σ±\sigma_{\pm} probe polarizations), independently from dynamic magnetization effects.Comment: 6 pages, 5 figure

    Coupling and induced depinning of magnetic domain walls in adjacent spin valve nanotracks

    Get PDF
    The magnetostatic interaction between magnetic domain walls (DWs) in adjacent nanotracks has been shown to produce strong inter-DW coupling and mutual pinning. In this paper, we have used electrical measurements of adjacent spin-valve nanotracks to follow the positions of interacting DWs. We show that the magnetostatic interaction between DWs causes not only mutual pinning, as observed till now, but that a travelling DW can also induce the depinning of DWs in near-by tracks. These effects may have great implications for some proposed high density magnetic devices (e.g. racetrack memory, DW logic circuits, or DW-based MRAM).Comment: The following article has been accepted by the Journal of Applied Physic

    Universal conductance fluctuations in epitaxial GaMnAs ferromagnets: structural and spin disorder

    Full text link
    Mesoscopic transport measurements reveal a large effective phase coherence length in epitaxial GaMnAs ferromagnets, contrary to usual 3d-metal ferromagnets. Universal conductance fluctuations of single nanowires are compared for epilayers with a tailored anisotropy. At large magnetic fields, quantum interferences are due to structural disorder only, and an unusual behavior related to hole-induced ferromagnetism is evidenced, for both quantum interferences and decoherence. At small fields, phase coherence is shown to persist down to zero field, even in presence of magnons, and an additional spin disorder contribution to quantum interferences is observed under domain walls nucleation.Comment: 15 pages, 4 figure

    Magnetic properties and domain structure of (Ga,Mn)As films with perpendicular anisotropy

    Full text link
    The ferromagnetism of a thin GaMnAs layer with a perpendicular easy anisotropy axis is investigated by means of several techniques, that yield a consistent set of data on the magnetic properties and the domain structure of this diluted ferromagnetic semiconductor. The magnetic layer was grown under tensile strain on a relaxed GaInAs buffer layer using a procedure that limits the density of threading dislocations. Magnetometry, magneto-transport and polar magneto-optical Kerr effect (PMOKE) measurements reveal the high quality of this layer, in particular through its high Curie temperature (130 K) and well-defined magnetic anisotropy. We show that magnetization reversal is initiated from a limited number of nucleation centers and develops by easy domain wall propagation. Furthermore, MOKE microscopy allowed us to characterize in detail the magnetic domain structure. In particular we show that domain shape and wall motion are very sensitive to some defects, which prevents a periodic arrangement of the domains. We ascribed these defects to threading dislocations emerging in the magnetic layer, inherent to the growth mode on a relaxed buffer
    • …
    corecore