1,592 research outputs found

    On Optimal Detection of Point Sources in CMB Maps

    Full text link
    Point-source contamination in high-precision Cosmic Microwave Background (CMB) maps severely affects the precision of cosmological parameter estimates. Among the methods that have been proposed for source detection, wavelet techniques based on ``optimal'' filters have been proposed.In this paper we show that these filters are in fact only restrictive cases of a more general class of matched filters that optimize signal-to-noise ratio and that have, in general, better source detection capabilities, especially for lower amplitude sources. These conclusions are confirmed by some numerical experiments. \keywords{Methods: data analysis -- Methods: statisticalComment: 6 pages, 3 figure

    Applications of Wavelets to the Analysis of Cosmic Microwave Background Maps

    Get PDF
    We consider wavelets as a tool to perform a variety of tasks in the context of analyzing cosmic microwave background (CMB) maps. Using Spherical Haar Wavelets we define a position and angular-scale-dependent measure of power that can be used to assess the existence of spatial structure. We apply planar Daubechies wavelets for the identification and removal of points sources from small sections of sky maps. Our technique can successfully identify virtually all point sources which are above 3 sigma and more than 80% of those above 1 sigma. We discuss the trade-offs between the levels of correct and false detections. We denoise and compress a 100,000 pixel CMB map by a factor of about 10 in 5 seconds achieving a noise reduction of about 35%. In contrast to Wiener filtering the compression process is model independent and very fast. We discuss the usefulness of wavelets for power spectrum and cosmological parameter estimation. We conclude that at present wavelet functions are most suitable for identifying localized sources.Comment: 10 pages, 6 figures. Submitted to MNRA

    On the feedback from super stellar clusters. I. The structure of giant HII regions and HII galaxies

    Full text link
    We review the structural properties of giant extragalactic HII regions and HII galaxies based on 2D hydrodynamic calculations, and propose an evolutionary sequence that accounts for their observed detailed structure. The model assumes a massive and young stellar cluster surrounded by a large collection of clouds. These are thus exposed to the most important star-formation feedback mechanisms: photoionization and the cluster wind. The models show how the two feedback mechanisms compete in the disruption of clouds and lead to two different hydrodynamic solutions: The storage of clouds into a long lasting ragged shell that inhibits the expansion of the thermalized wind, and the steady filtering of the shocked wind gas through channels carved within the cloud stratum. Both solutions are claimed to be concurrently at work in giant HII regions and HII galaxies, causing their detailed inner structure. This includes multiple large-scale shells, filled with an X-ray emitting gas, that evolve to finally merge with each other, giving the appearance of shells within shells. The models also show how the inner filamentary structure of the giant superbubbles is largely enhanced with matter ablated from clouds and how cloud ablation proceeds within the original cloud stratum. The calculations point at the initial contrast density between the cloud and the intercloud media as the factor that defines which of the two feedback mechanisms becomes dominant throughout the evolution. Animated version of the models can be found at http://www.iaa.csic.es/\~{}eperez/ssc/ssc.html.Comment: 28 pages, 10 figures, accepted for publication in the ApJ. Animated version of the models can be found at http://www.iaa.csic.es/\~{}eperez/ssc/ssc.htm

    The pressure confined wind of the massive and compact superstar cluster M82-A1

    Full text link
    The observed parameters of the young superstar cluster M82-A1 and its associated compact HII region are here shown to indicate a low heating efficiency or immediate loss, through radiative cooling, of a large fraction of the energy inserted by stellar winds and supernovae during the early evolution of the cluster. This implies a bimodal hydrodynamic solution which leads to a reduced mass deposition rate into the ISM, with a much reduced outflow velocity. Furthermore, to match the observed parameters of the HII region associated to M82-A1, the resultant star cluster wind is here shown to ought to be confined by a high pressure interstellar medium. The cluster wind parameters, as well as the location of the reverse shock, its cooling length and the radius of the standing outer HII region are derived analytically. All of these properties are then confirmed with a semi-analytical integration of the flow equations, which provides us also with the run of the hydrodynamic variables as a function of radius. The impact of the results is discussed and extended to other massive and young superstar clusters surrounded by a compact HII region.Comment: 19 pages, 4 figures, accepted for publication in Ap

    On the Extreme Positive Feedback Star-Forming Mode from Massive and Compact Superstar Clusters

    Full text link
    The force of gravity acting within the volume occupied by young, compact and massive superstar clusters, is here shown to drive in situ all the matter deposited by winds and supernovae into several generations of star formation. These events are promoted by radiative cooling which drains the thermal energy of the ejected gas causing its accumulation to then rapidly exceed the gravitational instability criterion. A detailed account of the integrated ionizing radiation and mechanical luminosity as a function of time is here shown to lead to a new stationary solution. In this, the mass deposition rate M˙\dot M, instead of causing a wind as in the adiabatic solution, turns into a positive feedback star-forming mode equal to the star formation rate. Some of the implications of this extreme positive feedback mode are discussed.Comment: 4 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    The Dipole Observed in the COBE DMR Four-Year Data

    Get PDF
    The largest anisotropy in the cosmic microwave background (CMB) is the ≈3\approx 3 mK dipole assumed to be due to our velocity with respect to the CMB. Using the four year data set from all six channels of the COBE Differential Microwave Radiometers (DMR), we obtain a best-fit dipole amplitude 3.358±0.001±0.0233.358 \pm 0.001 \pm 0.023 mK in the direction (l,b)=(264deg⁥.31±0deg⁥.04±0deg⁥.16,+48deg⁥.05±0deg⁥.02±0deg⁥.09)(l,b)=(264\deg.31 \pm 0\deg.04 \pm 0\deg.16, +48\deg.05 \pm 0\deg.02 \pm 0\deg.09), where the first uncertainties are statistical and the second include calibration and combined systematic uncertainties. This measurement is consistent with previous DMR and FIRAS resultsComment: New and improved version; to be published in ApJ next mont

    On the X-ray Emission from Massive Star Clusters and their Evolving Superbubbles

    Full text link
    The X-ray emission properties from the hot thermalized plasma that results from the collisions of individual stellar winds and supernovae ejecta within rich and compact star clusters are discussed. We propose a simple analytical way of estimating the X-ray emission generated by super star clusters and derive an expression that indicates how this X-ray emission depends on the main cluster parameters. Our model predicts that the X-ray luminosity from the star cluster region is highly dependent on the star cluster wind terminal speed, a quantity related to the temperature of the thermalized ejecta.We have also compared the X-ray luminosity from the SSC plasma with the luminosity of the interstellar bubbles generated from the mechanical interaction of the high velocity star cluster winds with the ISM.We found that the hard (2.0 keV - 8.0 keV) X-ray emission is usually dominated by the hotter SSC plasma whereas the soft (0.3 keV - 2.0 keV) component is dominated by the bubble plasma. This implies that compact and massive star clusters should be detected as point-like hard X-ray sources embedded into extended regions of soft diffuse X-ray emission. We also compared our results with predictions from the population synthesis models that take into consideration binary systems and found that in the case of young,massive and compact super star clusters the X-ray emission from the thermalized star cluster plasma may be comparable or even larger than that expected from the HMXB population.Comment: 24 pages, 8 figures, Accepted for publication in The Astrophysical Journa
    • 

    corecore