122 research outputs found

    The activation of Csk by CD4 interferes with TCR-mediated activatory signaling

    Get PDF
    CD4-Lck recruitment to TCR/CD3, as well as Lck activation is essential for T cell activation. Indeed, the blockage of CD4-Lck recruitment to TCR during antigen recognition exerts a drastic inhibitory effect on T cell activation by interfering with both early and late phases of T cell signaling. In the present work, we report a novel inhibitory mechanism by which CD4 can shut down proximal T cell-activating signals. Indeed, we show that upon ligation of CD4 by antibodies the inhibitory kinase, p50csk, is strongly induced and prolonged during the time. In contrast, p50csk was not activated when TCR and CD4 were properly engaged by their ligands. We also demonstrate that anti-CD4 treatment stimulated Csk kinase associated to the membrane adapter, PAG/Cbp, without affecting the total amount of Csk bound to PAG/Cbp. As a consequence, early tyrosine phosphorylation events as well as downstream signaling pathways leading to IL-2 gene expression induced by TCR were inhibited in anti-CD4 pretreated cells. We suggest a new model to explain the activation of negative signals by CD4 molecule

    Design-By-Contract for Flexible Multiparty Session Protocols

    Get PDF
    Choreographic models support a correctness-by-construction principle in distributed programming. Also, they enable the automatic generation of correct message-based communication patterns from a global specification of the desired system behaviour. In this paper we extend the theory of choreography automata, a choreographic model based on finite-state automata, with two key features. First, we allow participants to act only in some of the scenarios described by the choreography automaton. While this seems natural, many choreographic approaches in the literature, and choreography automata in particular, forbid this behaviour. Second, we equip communications with assertions constraining the values that can be communicated, enabling a design-by-contract approach. We provide a toolchain allowing to exploit the theory above to generate APIs for TypeScript web programming. Programs communicating via the generated APIs follow, by construction, the prescribed communication pattern and are free from communication errors such as deadlocks

    CD28 individual signaling up-regulates IL-22 expression and IL-22-mediated effector functions in human T lymphocytes

    Get PDF
    IL‐22 is a member of the IL‐10 cytokine family involved in host protection against extracellular pathogens, by promoting epithelial cell regeneration and barrier functions. Dysregulation of IL‐22 production has also frequently been observed in acute respiratory distress syndrome (ARDS) and several chronic inflammatory and autoimmune diseases. We have previously described that human CD28, a crucial co‐stimulatory receptor necessary for full T cell activation, is also able to act as a TCR independent signalling receptor and to induce the expression of IL‐17A and inflammatory cytokines related to Th17 cells, which together with Th22 cells represent the main cellular source of IL‐22. Here we characterized the role of CD28 autonomous signalling in regulating IL‐22 expression in human CD4+ T cells. We show that CD28 stimulation in the absence of TCR strongly up‐regulates IL‐22 gene expression and secretion. As recently observed for IL‐17A, we also found that CD28‐mediated regulation of IL‐22 transcription requires the cooperative activities of both IL‐6‐activated STAT3 and RelA/NF‐Îș transcription factors. CD28‐mediated IL‐22 production also promotes the barrier functions of epithelial cells by inducing mucin and metalloproteases expression. Finally, by using specific inhibitory drugs, we also identified CD28‐associated class 1A phosphatidylinositol 3‐kinase (PI3K) as a pivotal mediator of CD28‐mediated IL‐22 expression and IL‐ 22‐dependent epithelial cell barrier functions

    CD28 autonomous signaling orchestrates IL-22 expression and IL-22-regulated epithelial barrier functions in human T lymphocytes

    Get PDF
    IL-22 is a member of the IL-10 cytokine family involved in host protection against extracellular pathogens, by promoting epithelial cell regeneration and barrier functions. Dysregulation of IL-22 production has also frequently been observed in acute respiratory distress syndrome (ARDS) and several chronic inflammatory and autoimmune diseases. We have previously described that human CD28, a crucial co-stimulatory receptor necessary for full T cell activation, is also able to act as a TCR independent signaling receptor and to induce the expression of IL-17A and inflammatory cytokines related to Th17 cells, which together with Th22 cells represent the main cellular source of IL-22. Here we characterized the role of CD28 autonomous signaling in regulating IL-22 expression in human CD4+ T cells. We show that CD28 stimulation in the absence of TCR strongly up-regulates IL-22 gene expression and secretion. As recently observed for IL-17A, we also found that CD28-mediated regulation of IL-22 transcription requires the cooperative activities of both IL-6-activated STAT3 and RelA/NF-ÎșB transcription factors. CD28-mediated IL-22 production also promotes the barrier functions of epithelial cells by inducing mucin and metalloproteases expression. Finally, by using specific inhibitory drugs, we also identified CD28-associated class 1A phosphatidylinositol 3-kinase (PI3K) as a pivotal mediator of CD28-mediated IL-22 expression and IL-22–dependent epithelial cell barrier functions

    Staphylococcal enterotoxin B (SEB) activates TCR- and CD28-mediated inflammatory signals in the absence of MHC class II molecules

    Get PDF
    The inflammatory activity of staphylococcal enterotoxin B (SEB) relies on its capacity to trigger polyclonal T‐cell activation by binding both T‐cell receptor (TCR) and costimulatory receptor CD28 on T cells and MHC class II and B7 molecules on antigen presenting cells (APC). Previous studies highlighted that SEB may bind TCR and CD28 molecules independently of MHC class II, yet the relative contribution of these interactions to the pro‐inflammatory function of SEB remained unclear. Here, we show that binding to MHC class II is dispensable for the inflammatory activity of SEB, whereas binding to TCR, CD28 and B7 molecules is pivotal, in both human primary T cells and Jurkat T cell lines. In particular, our finding is that binding of SEB to B7 molecules suffices to trigger both TCR‐ and CD28‐mediated inflammatory signalling. We also provide evidence that, by strengthening the interaction between CD28 and B7, SEB favours the recruitment of the TCR into the immunological synapse, thus inducing lethal inflammatory signallin

    Towards an embedding of Graph Transformation in Intuitionistic Linear Logic

    Full text link
    Linear logics have been shown to be able to embed both rewriting-based approaches and process calculi in a single, declarative framework. In this paper we are exploring the embedding of double-pushout graph transformations into quantified linear logic, leading to a Curry-Howard style isomorphism between graphs and transformations on one hand, formulas and proof terms on the other. With linear implication representing rules and reachability of graphs, and the tensor modelling parallel composition of graphs and transformations, we obtain a language able to encode graph transformation systems and their computations as well as reason about their properties

    ERAP1 and ERAP2 Haplotypes Influence Suboptimal HLA-B*27:05-Restricted Anti-Viral CD8+ T Cell Responses Cross-Reactive to Self-Epitopes

    Get PDF
    The human leukocyte antigen (HLA)-B*27 family of alleles is strongly associated with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial and peripheral joints, yet some HLA-B*27 variants not associated with AS have been shown. Since no major differences in the ligandome of associated compared to not-associated alleles have emerged, a plausible hypothesis is that the quantity rather than the quality of the presented epitopes makes the difference. In addition, the Endoplasmic Reticulum AminoPeptidases (ERAPs) 1 and 2, playing a crucial role in shaping the HLA class I epitopes, act as strong AS susceptibility factors, suggesting that an altered peptidome might be responsible for the activation of pathogenic CD8+ T cells. In this context, we have previously singled out a B*27:05-restricted CD8+ T cell response against pEBNA3A (RPPIFIRRL), an EBV peptide lacking the B*27 classic binding motif. Here, we show that a specific ERAP1/2 haplotype negatively correlates with such response in B*27:05 subjects. Moreover, we prove that the B*27:05 allele successfully presents peptides with the same suboptimal N-terminal RP motif, including the self-peptide, pDYNEIN (RPPIFGDFL). Overall, this study underscores the cooperation between the HLA-B*27 and ERAP1/2 allelic variants in defining CD8+ T cell reactivity to suboptimal viral and self-B*27 peptides and prompts further investigation of the B*27:05 peptidome composition

    Composing Communicating Systems, Synchronously

    Get PDF
    Conference moved to 2021 due to covid-19International audienceCommunicating systems are nowadays part of everyday life, yet programming and analysing them is difficult. One of the many reasons for this difficulty is their size, hence compositional approaches are a need. We discuss how to ensure relevant communication properties such as deadlock freedom in a compositional way. The idea is that communicating systems can be composed by taking two of their participants and transforming them into coupled forwarders connecting the two systems. It has been shown that, for asynchronous communications, if the participants are "compatible" then composition satisfies relevant communication properties provided that the single systems satisfy them. We show that such a result changes considerably for synchronous communications. We also discuss a different form of composition, where a unique forwarder is used
    • 

    corecore