1,577 research outputs found

    Rotational splitting as a function of mode frequency for six Sun-like stars

    Full text link
    Asteroseismology offers the prospect of constraining differential rotation in Sun-like stars. Here we have identified six high signal-to-noise main-sequence Sun-like stars in the Kepler field, which all have visible signs of rotational splitting of their p-mode frequencies. For each star, we extract the rotational frequency splitting and inclination angle from separate mode sets (adjacent modes with l=2, 0, and 1) spanning the p-mode envelope. We use a Markov chain Monte Carlo method to obtain the best fit and errors associated with each parameter. We are able to make independent measurements of rotational splittings of ~8 radial orders for each star. For all six stars, the measured splittings are consistent with uniform rotation, allowing us to exclude large radial differential rotation. This work opens the possibility of constraining internal rotation of Sun-like stars.Comment: Published in Astronomy and Astrophysics. 4 pages, 3 figure

    Responding to the Global Financial and Economic Crisis: Meeting the Challenges in Asia

    Get PDF
    The global financial and economic crisis marks an important turning point for finance and the Asian growth model. Regional consensus is now supporting economic rebalancing away from the dominant focus on exports to developed markets and towards more a more balanced economic structure supported by domestic and regional financial development. In relation to finance, the crisis highlights the necessity of addressing a range of issues across the region. First, Asian approaches to financial liberalization, prudential regulation, and financial innovation are likely to be closely considered around the world. At the same time, while the region has not been at the center of the global crisis—in contrast to the Asian financial crisis of 1997/98—it nonetheless provides an important opportunity to strengthen domestic and regional financial regulation. Second, beyond the post-crisis issues, and the prevention of systemic risk in particular, finance must continue to play a central role in supporting economic development and poverty reduction across the region. While the global crisis has highlighted once again the risks of finance, a central objective across Asia must be financial sector development to support economic growth and development. Third, in addition to domestic reform, the crisis provides an opportunity to enhance the international financial architecture, not only to improve its efficacy, but also to enhance the role of empowered Asian economies in global fora and institutions. At the same time, weaknesses in the international financial architecture suggest the need for Asian regional alternatives to address liquidity, liberalization, regulation, and exchange rate volatility.published_or_final_versio

    Comparison of acoustic travel-time measurement of solar meridional circulation from SDO/HMI and SOHO/MDI

    Full text link
    Time-distance helioseismology is one of the primary tools for studying the solar meridional circulation. However, travel-time measurements of the subsurface meridional flow suffer from a variety of systematic errors, such as a center-to-limb variation and an offset due to the P-angle uncertainty of solar images. Here we apply the time-distance technique to contemporaneous medium-degree Dopplergrams produced by SOHO/MDI and SDO/HMI to obtain the travel-time difference caused by meridional circulation throughout the solar convection zone. The P-angle offset in MDI images is measured by cross-correlating MDI and HMI images. The travel-time measurements in the south-north and east-west directions are averaged over the same observation period for the two data sets and then compared to examine the consistency of MDI and HMI travel times after correcting the systematic errors. The offsets in the south-north travel-time difference from MDI data induced by the P-angle error gradually diminish with increasing travel distance. However, these offsets become noisy for travel distances corresponding to waves that reach the base of the convection zone. This suggests that a careful treatment of the P-angle problem is required when studying a deep meridional flow. After correcting the P-angle and the removal of the center-to-limb effect, the travel-time measurements from MDI and HMI are consistent within the error bars for meridional circulation covering the entire convection zone. The fluctuations observed in both data sets are highly correlated and thus indicate their solar origin rather than an instrumental origin. Although our results demonstrate that the ad hoc correction is capable of reducing the wide discrepancy in the travel-time measurements from MDI and HMI, we cannot exclude the possibility that there exist other systematic effects acting on the two data sets in the same way.Comment: accepted for publication in A&

    The global credit crisis and securitization in East Asia

    Get PDF
    postprin

    Global-scale equatorial Rossby waves as an essential component of solar internal dynamics

    Full text link
    The Sun's complex dynamics is controlled by buoyancy and rotation in the convection zone and by magnetic forces in the atmosphere and corona. While small-scale solar convection is well understood, the dynamics of large-scale flows in the solar convection zone is not explained by theory or simulations. Waves of vorticity due to the Coriolis force, known as Rossby waves, are expected to remove energy out of convection at the largest scales. Here we unambiguously detect and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at angular wavenumbers below fifteen, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below 200 nHz in a co-rotating frame, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We find a transition from turbulence-like to wave-like dynamics around the Rhines scale of angular wavenumber of twenty; this might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.Comment: This is the submitted version of the paper published in Nature Astronomy. 23 pages, 8 figures, 1 tabl

    Sub-Wavelength Resolution Imaging of the Solar Deep Interior

    Full text link
    We derive expectations for signatures in the measured travel times of waves that interact with thermal anomalies and jets. A series of numerical experiments that involve the dynamic linear evolution of an acoustic wave field in a solar-like stratified spherical shell in the presence of fully 3D time-stationary perturbations are performed. The imprints of these interactions are observed as shifts in wave travel times, which are extracted from these data through methods of time-distance helioseismology \citep{duvall}. In situations where at least one of the spatial dimensions of the scatterer was smaller than a wavelength, oscillatory time shift signals were recovered from the analyses, pointing directly to a means of resolving sub-wavelength features. As evidence for this claim, we present analyses of simulations with spatially localized jets and sound-speed perturbations. We analyze 1 years' worth solar observations to estimate the noise level associated with the time differences. Based on theoretical estimates, Fresnel zone time shifts associated with the (possible) sharp rotation gradient at the base of the convection zone are of the order 0.01 - 0.1 s, well below the noise level that could be reached with the currently available amount of data (∼0.15−0.2\sim 0.15-0.2 s with 10 yrs of data).Comment: Accepted, ApJ; 17 pages, 12 figure

    On the Penetration of Meridional Circulation below the Solar Convection Zone II: Models with Convection Zone, the Taylor-Proudman constraint and Applications to Other Stars

    Full text link
    The solar convection zone exhibits a strong level of differential rotation, whereby the rotation period of the polar regions is about 25-30% longer than the equatorial regions. The Coriolis force associated with these zonal flows perpetually "pumps" the convection zone fluid, and maintains a quasi-steady circulation, poleward near the surface. What is the influence of this meridional circulation on the underlying radiative zone, and in particular, does it provide a significant source of mixing between the two regions? In Paper I, we began to study this question by assuming a fixed meridional flow pattern in the convection zone and calculating its penetration depth into the radiative zone. We found that the amount of mixing caused depends very sensitively on the assumed flow structure near the radiative--convective interface. We continue this study here by including a simple model for the convection zone "pump", and calculating in a self-consistent manner the meridional flows generated in the whole Sun. We find that the global circulation timescale depends in a crucial way on two factors: the overall stratification of the radiative zone as measured by the Rossby number times the square root of the Prandtl number, and, for weakly stratified systems, the presence or absence of stresses within the radiative zone capable of breaking the Taylor-Proudman constraint. We conclude by discussing the consequences of our findings for the solar interior and argue that a potentially important mechanism for mixing in Main Sequence stars has so far been neglected.Comment: 42 pages, 13 figures. Submitted to Ap
    • …
    corecore