640 research outputs found

    Fiber Bragg Grating sensors for deformation monitoring of GEM foils in HEP detectors

    Full text link
    Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy physics (HEP) as high precision positioning and re-positioning sensors and as low cost, easy to mount, radiation hard and low space- consuming temperature and humidity devices. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide Gas Electron Multiplier (GEM) foils of the GE1/1 chambers of the Compact Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) of CERN. A network of FBG sensors has been used to determine the optimal mechanical tension applied and to characterize the mechanical stress applied to the foils. The preliminary results of the test performed on a full size GE1/1 final prototype and possible future developments will be discussed.Comment: Four pages, seven figures. Presented by Michele Caponero at IWASI 2015, Gallipoli (Italy

    Eco-friendly gas mixtures for Resistive Plate Chambers based on Tetrafluoropropene and Helium

    Full text link
    Due to the recent restrictions deriving from the application of the Kyoto protocol, the main components of the gas mixtures presently used in the Resistive Plate Chambers systems of the LHC experiments will be most probably phased out of production in the coming years. Identifying possible replacements with the adequate characteristics requires an intense R&D, which was recently started, also in collaborations across the various experiments. Possible candidates have been proposed and are thoroughly investigated. Some tests on one of the most promising candidate - HFO-1234ze, an allotropic form of tetrafluoropropane- have already been reported. Here an innovative approach, based on the use of Helium, to solve the problems related to the too elevate operating voltage of HFO-1234ze based gas mixtures, is discussed and the relative first results are shown.Comment: 9 pages, 6 figures, 1 tabl

    Cms gem detector material study for the hl-lhc

    Get PDF
    A study on the Gaseous Electron Multiplier (GEM) foil material is performed to determine the moisture diffusion rate, moisture saturation level and the effects on its mechanical properties. The study is focused on the foil contact with ambient air and moisture to determine the value of the diffusion coefficient of water in the foil material. The presence of water inside the detector foil can determine the changes in its mechanical and electrical properties. A simulated model is developed with COMSOL Multiphysics v. 4.3 [1] by taking into account the real GEM foil (hole dimensions, shapes and material), which describes the adsorption of water. This work describes the model, its experimental verification, the water diffusion within the entire sheet geometry of the GEM foil, thus gaining concentration profiles and the time required to saturate the system and the effects on the mechanical properties

    Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Get PDF
    Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation

    Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Full text link
    Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.Comment: 38 pages, 9 figures, 8 tables. To be submitted to Journal of Instrumentatio

    Lc and nmr studies for identification and characterization of degradation byproducts of olmesartan acid, elucidation of their degradation pathway and ecotoxicity assessment

    Get PDF
    The discovery of various sartans, which are among the most used antihypertensive drugs in the world, is increasingly frequent not only in wastewater but also in surface water and, in some cases, even in drinking or groundwater. In this paper, the degradation pathway of olmesartan acid, one of the most used sartans, was investigated by simulating the chlorination process normally used in a wastewater treatment plant to reduce similar emerging pollutants. The structures of nine isolated degradation byproducts (DPs), eight of which were isolated for the first time, were separated via chromatography column and HPLC methods, identified by combining nuclear magnetic resonance and mass spectrometry, and justified by a proposed mechanism of formation beginning from the parent drug. Ecotoxicity tests on olmesartan acid and its nine DPs showed that 50% of the investigated byproducts inhibited the target species Aliivibrio fischeri and Raphidocelis subcapitata, causing functional decreases of 18% and 53%, respectively

    Candidate eco-friendly gas mixtures for MPGDs

    Get PDF
    Modern gas detectors for detection of particles require F-based gases for optimal performance.Recent regulations demand the use of environmentally unfriendly F-based gases t o be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements

    Amoxicillin in water: Insights into relative reactivity, byproduct formation, and toxicological interactions during chlorination

    Get PDF
    In recent years, many studies have highlighted the consistent finding of amoxicillin in waters destined for wastewater treatment plants, in addition to superficial waters of rivers and lakes in both Europe and North America. In this paper, the amoxicillin degradation pathway was investigated by simulating the chlorination process normally used in a wastewater treatment plant to reduce similar emerging pollutants at three different pH values. The structures of 16 isolated degradation byproducts (DPs), one of which was isolated for the first time, were separated on a C-18 column via a gradient HPLC method. Combining mass spectrometry and nuclear magnetic resonance, we then compared commercial standards and justified a proposed formation mechanism beginning from the parent drug. Microbial growth inhibition bioassays with Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were performed to determine the potential loss of antibacterial activity in isolated degradation byproducts. An increase of antibacterial activity in the DPs was observed compared to the parent compound

    Secondary effects of hypochlorite treatment on the emerging pollutant candesartan: The formation of degradation byproducts and their toxicological profiles

    Get PDF
    In recent years, many studies have reported the frequent detection of antihypertensive agents such as sartans (olmesartan, valsartan, irbesartan and candesartan) in the influents and effluents of wastewater treatment plants (WWTPs) and in the superficial waters of rivers and lakes in both Europe and North America. In this paper, the degradation pathway for candesartan (CAN) was investigated by simulating the chlorination process that is normally used to reduce microbial contamination in a WWTP. Twelve isolated degradation byproducts (DPs), four of which were isolated for the first time, were separated on a C-18 column by employing a gradient HPLC method, and their structures were identified by combining nuclear magnetic resonance and mass spectrometry and comparing the results with commercial standards. On the basis of these results, a mechanism of formation starting from the parent drug is proposed. The ecotoxicity of CAN and its DPs was studied by conducting a battery of ecotoxicity tests; bioassays were performed using Aliivibrio fischeri (bacterium), Daphnia magna (planktonic crustacean) and Raphidocelis subcapitata (alga). The ecotoxicity results shed new light on the increased toxicity of DPs compared with the parent compound

    Octocrylene: From Sunscreens to the Degradation Pathway during Chlorination Processes: Formation of Byproducts and Their Ecotoxicity Assessment

    Get PDF
    Octocrylene is an organic sunscreen whose main action is to absorb UVB radiation and short UVA wavelengths; it is used in various cosmetic products in order to provide an adequate sun-protection factor or to protect the cosmetic formulations themselves from UV radiation. This filter is believed to be a possible endocrine disruptor and is also questioned due to its allergic and/or photoallergic potential. However, it continues to be widely used, and it has been found in various environments, not least those of swimming pools, where it is evidently released by consumers, to the point that it is now considered an emerging micropollutant. The present investigation presents the possible chemical fate of octocrylene in the typical chlorination conditions of wastewater or swimming pools. A total of 11 disinfection byproducts were identified, and 6 were identified for the first time, and separated by HPLC. These products were identified through careful mass spectrometry studies and 1D and 2D NMR experiments. A formation mechanism has been proposed that justifies the chemical structures of all of the compounds identified. The ecotoxicological assessment of octocrylene and their products was carried out by employing Phaeodactylum tricornutum, Brachionus plicatilis and Aliivibrio fischeri as bioindicators. The ecotoxicity results reveal that toxic byproducts might be generated during the oxidation process, increasing the potential risk to the marine environment
    • …
    corecore