107 research outputs found
The stationary wavelet transform as an efficient reductor of powerline interference for atrial bipolar electrograms in cardiac electrophysiology
[EN] Objective :The most relevant source of signal contamination in the cardiac electrophysiology (EP) laboratory is the ubiquitous powerline interference (PLI). To reduce this perturbation, algorithms including common fixed-bandwidth and adaptive-notch filters have been proposed. Although such methods have proven to add artificial fractionation to intra-atrial electrograms (EGMs), they are still frequently used. However, such morphological alteration can conceal the accurate interpretation of EGMs, specially to evaluate the mechanisms supporting atrial fibrillation (AF), which is the most common cardiac arrhythmia. Given the clinical relevance of AF, a novel algorithm aimed at reducing PLI on highly contaminated bipolar EGMs and, simultaneously, preserving their morphology is proposed. Approach: The method is based on the wavelet shrinkage and has been validated through customized indices on a set of synthesized EGMs to accurately quantify the achieved level of PLI reduction and signal morphology alteration. Visual validation of the algorithmÂżs performance has also been included for some real EGM excerpts. Main results: The method has outperformed common filtering-based and wavelet-based strategies in the analyzed scenario. Moreover, it possesses advantages such as insensitivity to amplitude and frequency variations in the PLI, and the capability of joint removal of several interferences. Significance: The use of this algorithm in routine cardiac EP studies may enable improved and truthful evaluation of AF mechanisms.Research supported by grants DPI2017-83952-C3 MINECO/AEI/FEDER, UE and SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha.Martinez-Iniesta, M.; RĂłdenas, J.; Rieta, JJ.; Alcaraz, R. (2019). The stationary wavelet transform as an efficient reductor of powerline interference for atrial bipolar electrograms in cardiac electrophysiology. Physiological Measurement. 40(7):1-17. https://doi.org/10.1088/1361-6579/ab2cb8S117407Addison, P. S. (2017). The Illustrated Wavelet Transform Handbook. doi:10.1201/9781315372556Allen, D. P. (2009). A frequency domain Hampel filter for blind rejection of sinusoidal interference from electromyograms. Journal of Neuroscience Methods, 177(2), 303-310. doi:10.1016/j.jneumeth.2008.10.019Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024Atienza, F., Almendral, J., Moreno, J., Vaidyanathan, R., Talkachou, A., Kalifa, J., … Berenfeld, O. (2006). Activation of Inward Rectifier Potassium Channels Accelerates Atrial Fibrillation in Humans. Circulation, 114(23), 2434-2442. doi:10.1161/circulationaha.106.633735Bahoura, M., & Ezzaidi, H. (2011). FPGA-Implementation of Discrete Wavelet Transform with Application to Signal Denoising. Circuits, Systems, and Signal Processing, 31(3), 987-1015. doi:10.1007/s00034-011-9355-0Baumert, M., Sanders, P., & Ganesan, A. (2016). Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation in Atrial Fibrillation. Proceedings of the IEEE, 104(2), 416-431. doi:10.1109/jproc.2015.2505318Castillo, E., Morales, D. P., GarcĂa, A., MartĂnez-MartĂ, F., Parrilla, L., & Palma, A. J. (2013). Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques. Journal of Applied Mathematics, 2013, 1-13. doi:10.1155/2013/763903Chen, S.-W., & Chen, Y.-H. (2015). Hardware Design and Implementation of a Wavelet De-Noising Procedure for Medical Signal Preprocessing. Sensors, 15(10), 26396-26414. doi:10.3390/s151026396El B’charri, O., Latif, R., Elmansouri, K., Abenaou, A., & Jenkal, W. (2017). ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform. BioMedical Engineering OnLine, 16(1). doi:10.1186/s12938-017-0315-1Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586Ganesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., … Sanders, P. (2013). Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/circep.112.976654Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215GOLDBERGER, J. J. (2017). Substrate Ablation for Treatment of Atrial Fibrillation: Back to Basics. Journal of Cardiovascular Electrophysiology, 28(2), 156-158. doi:10.1111/jce.13149GutiĂ©rrez-Gnecchi, J. A., Morfin-Magaña, R., Lorias-Espinoza, D., Tellez-Anguiano, A. del C., Reyes-Archundia, E., MĂ©ndez-Patiño, A., & Castañeda-Miranda, R. (2017). DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomedical Signal Processing and Control, 32, 44-56. doi:10.1016/j.bspc.2016.10.005Hamilton, P. S. (1996). A comparison of adaptive and nonadaptive filters for reduction of power line interference in the ECG. IEEE Transactions on Biomedical Engineering, 43(1), 105-109. doi:10.1109/10.477707Heijman, J., Algalarrondo, V., Voigt, N., Melka, J., Wehrens, X. H. T., Dobrev, D., & Nattel, S. (2015). The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovascular Research, 109(4), 467-479. doi:10.1093/cvr/cvv275Honarbakhsh, S., Schilling, R. J., Orini, M., Providencia, R., Keating, E., Finlay, M., … Hunter, R. J. (2019). Structural remodeling and conduction velocity dynamics in the human left atrium: Relationship with reentrant mechanisms sustaining atrial fibrillation. Heart Rhythm, 16(1), 18-25. doi:10.1016/j.hrthm.2018.07.019Jadidi, A. S., Lehrmann, H., Weber, R., Park, C.-I., & Arentz, T. (2013). Optimizing Signal Acquisition and Recording in an Electrophysiology Laboratory. Cardiac Electrophysiology Clinics, 5(2), 137-142. doi:10.1016/j.ccep.2013.01.005JARMAN, J. W. E., WONG, T., KOJODJOJO, P., SPOHR, H., DAVIES, J. E. R., ROUGHTON, M., … PETERS, N. S. (2014). Organizational Index Mapping to Identify Focal Sources During Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 25(4), 355-363. doi:10.1111/jce.12352KOTTKAMP, H., BERG, J., BENDER, R., RIEGER, A., & SCHREIBER, D. (2015). Box Isolation of Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification Approach for Ablation of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(1), 22-30. doi:10.1111/jce.12870Krijthe, B. P., Kunst, A., Benjamin, E. J., Lip, G. Y. H., Franco, O. H., Hofman, A., … Heeringa, J. (2013). Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. European Heart Journal, 34(35), 2746-2751. doi:10.1093/eurheartj/eht280Lau, D. H., Schotten, U., Mahajan, R., Antic, N. A., Hatem, S. N., Pathak, R. K., … Sanders, P. (2015). Novel mechanisms in the pathogenesis of atrial fibrillation: practical applications. European Heart Journal, 37(20), 1573-1581. doi:10.1093/eurheartj/ehv375Lenis, G., Pilia, N., Loewe, A., Schulze, W. H. W., & Dössel, O. (2017). Comparison of Baseline Wander Removal Techniques considering the Preservation of ST Changes in the Ischemic ECG: A Simulation Study. Computational and Mathematical Methods in Medicine, 2017, 1-13. doi:10.1155/2017/9295029Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: a review of the subtraction procedure. BioMedical Engineering OnLine, 4(1). doi:10.1186/1475-925x-4-50Lian, J., Garner, G., Muessig, D., & Lang, V. (2010). A simple method to quantify the morphological similarity between signals. Signal Processing, 90(2), 684-688. doi:10.1016/j.sigpro.2009.07.010Liu, H., Li, Y., Zhou, Y., Jing, X., & Truong, T.-K. (2018). Joint power line interference suppression and ECG signal recovery in transform domains. Biomedical Signal Processing and Control, 44, 58-66. doi:10.1016/j.bspc.2018.04.001Mamun, M., Al-Kadi, M., & Marufuzzaman, M. (2013). Effectiveness of Wavelet Denoising on Electroencephalogram Signals. Journal of Applied Research and Technology, 11(1), 156-160. doi:10.1016/s1665-6423(13)71524-4Martens, S. M. M., Mischi, M., Oei, S. G., & Bergmans, J. W. M. (2006). An Improved Adaptive Power Line Interference Canceller for Electrocardiography. IEEE Transactions on Biomedical Engineering, 53(11), 2220-2231. doi:10.1109/tbme.2006.883631Martďż˝nez, M., Rďż˝denas, J., Alcaraz, R., & Rieta, J. J. (2017). Application of the Stationary Wavelet Transform to Reduce Power-line Interference in Atrial Electrograms. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.112-049MartĂnez-Iniesta, M., RĂłdenas, J., Alcaraz, R., & Rieta, J. J. (2017). Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology. Annals of Biomedical Engineering, 45(8), 1890-1907. doi:10.1007/s10439-017-1832-6Metting van Rijn, A. C., Peper, A., & Grimbergen, C. A. (1990). High-quality recording of bioelectric events. Medical & Biological Engineering & Computing, 28(5), 389-397. doi:10.1007/bf02441961Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054Naseri, H., & Homaeinezhad, M. R. (2012). Computerized quality assessment of phonocardiogram signal measurement-acquisition parameters. Journal of Medical Engineering & Technology, 36(6), 308-318. doi:10.3109/03091902.2012.684832NG, J., BORODYANSKIY, A. I., CHANG, E. T., VILLUENDAS, R., DIBS, S., KADISH, A. H., & GOLDBERGER, J. J. (2010). Measuring the Complexity of Atrial Fibrillation Electrograms. Journal of Cardiovascular Electrophysiology, 21(6), 649-655. doi:10.1111/j.1540-8167.2009.01695.xNg, J., Sehgal, V., Ng, J. K., Gordon, D., & Goldberger, J. J. (2014). Iterative Method to Detect Atrial Activations and Measure Cycle Length From Electrograms During Atrial Fibrillation. IEEE Transactions on Biomedical Engineering, 61(2), 273-278. doi:10.1109/tbme.2013.2290003Oesterlein, T. G., Lenis, G., Rudolph, D.-T., Luik, A., Verma, B., Schmitt, C., & Dössel, O. (2015). Removing ventricular far-field signals in intracardiac electrograms during stable atrial tachycardia using the periodic component analysis. Journal of Electrocardiology, 48(2), 171-180. doi:10.1016/j.jelectrocard.2014.12.004Platonov, P. G., Corino, V. D. A., Seifert, M., Holmqvist, F., & Sornmo, L. (2014). Atrial fibrillatory rate in the clinical context: natural course and prediction of intervention outcome. Europace, 16(suppl 4), iv110-iv119. doi:10.1093/europace/euu249Poornachandra, S., & Kumaravel, N. (2008). A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Digital Signal Processing, 18(2), 116-126. doi:10.1016/j.dsp.2007.03.011Quintanilla, J. G., PĂ©rez-VillacastĂn, J., PĂ©rez-Castellano, N., Pandit, S. V., Berenfeld, O., Jalife, J., & Filgueiras-Rama, D. (2016). Mechanistic Approaches to Detect, Target, and Ablate the Drivers of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 9(1). doi:10.1161/circep.115.002481Ravelli, F., Masè, M., Cristoforetti, A., Marini, M., & Disertori, M. (2014). The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Progress in Biophysics and Molecular Biology, 115(2-3), 186-197. doi:10.1016/j.pbiomolbio.2014.07.006Schanze, T. (2017). Removing noise in biomedical signal recordings by singular value decomposition. Current Directions in Biomedical Engineering, 3(2), 253-256. doi:10.1515/cdbme-2017-0052Schotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H., & Hindricks, G. (2016). Current controversies in determining the main mechanisms of atrial fibrillation. Journal of Internal Medicine, 279(5), 428-438. doi:10.1111/joim.12492Singh, B. N., & Tiwari, A. K. (2006). Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Processing, 16(3), 275-287. doi:10.1016/j.dsp.2005.12.003Van Wagoner, D. R., Piccini, J. P., Albert, C. M., Anderson, M. E., Benjamin, E. J., Brundel, B., … Wehrens, X. H. T. (2015). Progress toward the prevention and treatment of atrial fibrillation: A summary of the Heart Rhythm Society Research Forum on the Treatment and Prevention of Atrial Fibrillation, Washington, DC, December 9–10, 2013. Heart Rhythm, 12(1), e5-e29. doi:10.1016/j.hrthm.2014.11.011Venkatachalam, K. L., Herbrandson, J. E., & Asirvatham, S. J. (2011). Signals and Signal Processing for the Electrophysiologist. Circulation: Arrhythmia and Electrophysiology, 4(6), 965-973. doi:10.1161/circep.111.96430
Estimadores del retardo entre las series de QT y RR en registros ECG de prueba de esfuerzo: evaluaciĂłn en simulaciĂłn
La adaptaciĂłn lenta del intervalo QT ante cambios abruptos de
la frecuencia cardiaca (FC) se ha identificado como un marcador
de riesgo de arritmias ventriculares. Sin embargo, estos cambios
abruptos no son fáciles de inducir en pacientes. Recientemente,
se ha propuesto un método para cuantificar este tiempo de
adaptaciĂłn en electrocardiogramas (ECG) grabados durante
prueba de esfuerzo. Para ello se calcula el retardo entre la serie
real de QT y una serie estimada del QT instantáneo y sin memoria
que corresponderĂa a la FC real en cada momento. En este
trabajo se evalúa este método en un entorno controlando usando
señales simuladas de ECG correspondientes a una prueba de
esfuerzo. Las señales se obtienen a partir de un simulador al que
se le ha incorporado la capacidad de introducir una memoria del
QT y se ha añadido la contaminación con ruido muscular (RM)
variante en el tiempo. Los resultados muestran que: a) la
delineaciĂłn del final de la onda T sobre la primera derivaciĂłn
transformada espacial usando “Análisis de Componentes
Periódicas” ofrece el menor error para valores de SNR bajos en
prueba de esfuerzo, b) los valores obtenidos con el estimador
propuesto resultan mĂnimamente sesgados para SNR de 25 a 50
dB, siendo la estrategia de menor sesgo la que estima el QT
instantáneo, mediante una corrección previa de los pares [QT,
RR] en el pico la prueba de esfuerzo.Este trabajo se financiĂł con proyectos PID2022-
140556OB-I00 and TED2021-130459B-I00 (MICINN), y
por el Gobierno de AragĂłn (Grupo de referencia BSICoS
T39-23R and project LMP94_21. C. PĂ©rez agradece al
Gobierno de AragĂłn por su beca de doctorado personal,
IIU/796/2019
A novel multivariate STeady-state index during general ANesthesia (STAN)
The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for the assessment of the patient steady-state during general anesthesia was developed. The proposed wavelet based multivariate index responds adequately to different noxious stimuli, and attenuation provided by the analgesic in a dose-dependent manner for each stimulus analyzed in this study.The first author was supported by a scholarship from the Portuguese Foundation for Science and Technology (FCT SFRH/BD/35879/2007). The authors would also like to acknowledge the support of UISPA—System Integration and Process Automation Unit—Part of the LAETA (Associated Laboratory of Energy,
Transports and Aeronautics) a I&D Unit of the Foundation for Science and Technology (FCT), Portugal. FCT support under project PEst-OE/EME/LA0022/2013.info:eu-repo/semantics/publishedVersio
Comparison of atrial rhythm extraction techniques for the estimation of the main atrial frequency from the 12-lead electrocardiogram in atrial fibrillation
) Hz (Valencia) and 6.5 (5.9 -8.2) Hz (Newcastle). There were no significant differences between the atrial frequencies estimated by each of the techniques
Individual identification via electrocardiogram analysis
Background: During last decade the use of ECG recordings in biometric recognition studies has increased. ECG characteristics made it suitable for subject identification: it is unique, present in all living individuals, and hard to forge. However, in spite of the great number of approaches found in literature, no agreement exists on the most appropriate methodology. This study aimed at providing a survey of the techniques used so far in ECG-based human identification. Specifically, a pattern recognition perspective is here proposed providing a unifying framework to appreciate previous studies and, hopefully, guide future research. Methods: We searched for papers on the subject from the earliest available date using relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). The following terms were used in different combinations: electrocardiogram, ECG, human identification, biometric, authentication and individual variability. The electronic sources were last searched on 1st March 2015. In our selection we included published research on peer-reviewed journals, books chapters and conferences proceedings. The search was performed for English language documents. Results: 100 pertinent papers were found. Number of subjects involved in the journal studies ranges from 10 to 502, age from 16 to 86, male and female subjects are generally present. Number of analysed leads varies as well as the recording conditions. Identification performance differs widely as well as verification rate. Many studies refer to publicly available databases (Physionet ECG databases repository) while others rely on proprietary recordings making difficult them to compare. As a measure of overall accuracy we computed a weighted average of the identification rate and equal error rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the equal error rate equal to 0.92 %. Conclusions: Biometric recognition is a mature field of research. Nevertheless, the use of physiological signals features, such as the ECG traits, needs further improvements. ECG features have the potential to be used in daily activities such as access control and patient handling as well as in wearable electronics applications. However, some barriers still limit its growth. Further analysis should be addressed on the use of single lead recordings and the study of features which are not dependent on the recording sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be developed using fiducials and non-fiducial based features in order to catch the best of both approaches. ECG recognition in pathological subjects is also worth of additional investigations
Beat-to-beat vectorcardiographic analysis of ventricular depolarization and repolarization in myocardial infarction
OBJECTIVES: Increased beat-to-beat variability in the QT interval has been associated with heart disease and mortality. The purpose of this study was to investigate the beat-to-beat spatial and temporal variations of ventricular depolarization and repolarization in vectorcardiogram (VCG) for characterising myocardial infarction (MI) patients. METHODS: Standard 12-lead ECGs of 84 MI patients (22 f, 63±12 yrs; 62 m, 56±10 yrs) and 69 healthy subjects (17 f, 42±18 yrs; 52 m, 40±13 yrs) were investigated. To extract the beat-to-beat QT intervals, a template-matching algorithm and the singular value decomposition method have been applied to synthesise the ECG data to VCG. Spatial and temporal variations in the QRS complex and T-wave loops were studied by investigating several descriptors (point-to-point distance variability, mean loop length, T-wave morphology dispersion, percentage of loop area, total cosine R-to-T). RESULTS: Point-to-point distance variability of QRS and T-loops (0.13±.04 vs. 0.10±0.04, p<0.0001 and 0.16±.07 vs. 0.13±.06, p<0.05) were significantly larger in the MI group than in the control group. The average T-wave morphology dispersion was significantly higher in the MI group than in the control group (62±8 vs. 38±16, p<.0001). Further, its beat-to-beat variability appeared significantly lower in the MI group than in the control group (12±5 v. 15±6u, p<0.005). Moreover, the average percentage of the T-loop area was found significantly lower in the MI group than the controls (46±17 vs. 55±15, p<.001). Finally, the average and beat-to-beat variability of total cosine R-to-T were not found statistically significant between both groups. CONCLUSIONS: Beat-to-beat assessment of VCG parameters may have diagnostic attributes that might help in identifying MI patients.Muhammad A. Hasan, Derek Abbott and Mathias Baumer
- …