13 research outputs found

    Future air quality in Europe: a multi-model assessment of projected exposure to ozone

    Get PDF
    In order to explore future air quality in Europe at the 2030 horizon, two emission scenarios developed in the framework of the Global Energy Assessment including varying assumptions on climate and energy access policies are investigated with an ensemble of six regional and global atmospheric chemistry transport models. <br><br> A specific focus is given in the paper to the assessment of uncertainties and robustness of the projected changes in air quality. The present work relies on an ensemble of chemistry transport models giving insight into the model spread. Both regional and global scale models were involved, so that the ensemble benefits from medium-resolution approaches as well as global models that capture long-range transport. For each scenario a whole decade is modelled in order to gain statistical confidence in the results. A statistical downscaling approach is used to correct the distribution of the modelled projection. Last, the modelling experiment is related to a hind-cast study published earlier, where the performances of all participating models were extensively documented. <br><br> The analysis is presented in an exposure-based framework in order to discuss policy relevant changes. According to the emission projections, ozone precursors such as NO<sub>x</sub> will drop down to 30% to 50% of their current levels, depending on the scenario. As a result, annual mean O<sub>3</sub> will slightly increase in NO<sub>x</sub> saturated areas but the overall O<sub>3</sub> burden will decrease substantially. Exposure to detrimental O<sub>3</sub> levels for health (SOMO35) will be reduced down to 45% to 70% of their current levels. And the fraction of stations where present-day exceedences of daily maximum O<sub>3</sub> is higher than 120 μg m<sup>−3</sup> more than 25 days per year will drop from 43% down to 2 to 8%. <br><br> We conclude that air pollution mitigation measures (present in both scenarios) are the main factors leading to the improvement, but an additional cobenefit of at least 40% (depending on the indicator) is brought about by the climate policy

    Frontiers in air quality modelling

    Get PDF
    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high-performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, we find that model biases are significantly reduced, especially over urban areas. The high-resolution grid also allows revisiting of the contribution of individual city plumes to the European burden of pollution, providing new insights to target the appropriate geographical level of action when designing air pollution mitigation strategies

    High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE

    Get PDF
    A modified version of CHIMERE 2009, including new methodologies in emissions modelling and an urban correction, is used to perform a simulation at high resolution (0.125° × 0.0625°) over Europe for the year 2009. The model reproduces the temporal variability of NO<sub>2</sub>, O<sub>3</sub>, PM<sub>10</sub>, PM<sub>2.5</sub> better at rural (RB) than urban (UB) background stations, with yearly correlation values for the different pollutants ranging between 0.62 and 0.77 at RB sites and between 0.52 and 0.73 at UB sites. Also, the fractional biases (FBs) show that the model performs slightly better at RB sites than at UB sites for NO<sub>2</sub> (RB = −33.9%, UB = −53.6%), O<sub>3</sub> (RB = 20.1%, UB = 25.2%) and PM<sub>10</sub> (RB = −5.50%, UB = −20.1%). The difficulties for the model in reproducing NO<sub>2</sub> concentrations can be attributed to the general underestimation of NO<sub>x</sub> emissions as well as to the adopted horizontal resolution, which represents only partially the spatial gradient of the emissions over medium-size and small cities. The overestimation of O<sub>3</sub> by the model is related to the NO<sub>2</sub> underestimation and the overestimated O<sub>3</sub> concentrations of the lateral boundary conditions. At UB sites, CHIMERE reproduces PM<sub>2.5</sub> better than PM<sub>10</sub>. This is primarily the result of an underestimation of coarse particulate matter (PM) associated with uncertainties in secondary organic aerosol (SOA) chemistry and its precursor emissions (Po valley and Mediterranean basin), dust (south of Spain) and sea salt (western Europe). The results suggest that future work should focus on the development of national bottom-up emission inventories including a better account for semi-volatile organic compounds and their conversion to SOA, the improvement of the CHIMERE urban parameterization, the introduction into CHIMERE of the coarse nitrate chemistry and an advanced parameterization accounting for windblown dust emissions

    14 th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes -2-6

    No full text
    Abstract: Dispersion modelling is often used to estimate potentially contaminated areas in case of accidental release of microorganisms in the atmosphere. In the specific case of Legionella, accidental spread in the atmosphere due to contaminated cooling towers system may occur over distance larger than 10km. In addition, most cooling towers are located in urban areas where dispersion due to obstacles is complex. In this case, dispersion models have to take into account complex flows and microphysical processes that occur within the plume and may have an impact on the survival of the microorganisms. To estimate the concentration of microorganisms in these areas, a specific module has been developed within the lagrangian dispersion model Micro Swift Spray (MSS, Aria technologies). This module takes into account microorganisms outside or inside water liquid droplets and microphysical interaction inside the plume. A simple biological module governing the survival of airborne microorganisms has also been implemented in the dispersion model. In order to evaluate this model, a field campaign of biological aerosols dispersion was performed by CSTB (Champs-sur-Marne, France) on June 23 rd , 2009. Spores of bacillus atrophaeus (usually referred to as BG) initially contained in a water tank were disseminated in a suburban area from a source at 3 meters above ground level. Air was sampled by DGA MNRBC (Vert-Le-Petit, France) at 4 various locations from 50 to 300 meters from the source to monitor NG concentration. Direct impaction onto Petri dishes was performed with slit-samplers and sixstage Andersen impactors. Wetted-wall cyclones and SKC Biosamplers were also implemented in order to sample air and generate liquid samples. Dispersion modelling for this campaign has been carried out by INERIS using the microorganism module developed in MSS. The results show that predicted concentrations and in situ measurements are in agreement. MSS Model was implemented to simulate legionella airborne dispersion from a virtual cooling tower at the same location. The biological model has been activated. Results show that the impact of biological model on airborne concentration is significant

    Air quality trends in Europe over the past decade: a first multi-model assessment

    Get PDF
    International audienceWe discuss the capability of current state-of-the-art chemistry and transport models to reproduce air quality trends and inter annual variability. Documenting these strengths and weaknesses on the basis of historical simulations is essential before the models are used to investigate future air quality projections. To achieve this, a coordinated modelling exercise was performed in the framework of the CityZEN European Project. It involved six regional and global chemistry-transport models (Bolchem, Chimere, Emep, Eurad, OsloCTM2 and Mozart) simulating air quality over the past decade in the Western European anthropogenic emissions hotspots. Comparisons between models and observations allow assessing the skills of the models to capture the trends in basic atmospheric constituents (NO2, O3, and PM10). We find that the trends of primary constituents are well reproduced (except in some countries - owing to their sensitivity to the emission inventory) although capturing the more moderate trends of secondary species such as O3 is more challenging. Apart from the long term trend, the modelled monthly variability is consistent with the observations but the year-to-year variability is generally underestimated. A comparison of simulations where anthropogenic emissions are kept constant is also investigated. We find that the magnitude of the emission-driven trend exceeds the natural variability for primary compounds. We can thus conclude that emission management strategies have had a significant impact over the past 10 yr, hence supporting further emission reductions strategies

    Is the ozone climate penalty robust in Europe?

    No full text
    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071-2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041-2070 and 2071-2100 time windows, respectively. © 2015 IOP Publishing Ltd
    corecore