15,277 research outputs found

    Opening the Pandora's box of quantum spinor fields

    Full text link
    Lounesto's classification of spinors is a comprehensive and exhaustive algorithm that, based on the bilinears covariants, discloses the possibility of a large variety of spinors, comprising regular and singular spinors and their unexpected applications in physics and including the cases of Dirac, Weyl, and Majorana as very particular spinor fields. In this paper we pose the problem of an analogous classification in the framework of second quantization. We first discuss in general the nature of the problem. Then we start the analysis of two basic bilinear covariants, the scalar and pseudoscalar, in the second quantized setup, with expressions applicable to the quantum field theory extended to all types of spinors. One can see that an ampler set of possibilities opens up with respect to the classical case. A quantum reconstruction algorithm is also proposed. The Feynman propagator is extended for spinors in all classes.Comment: 18 page

    TWO-PION EXCHANGE NUCLEAR POTENTIAL - CHIRAL CANCELLATIONS

    Full text link
    We show that chiral symmetry is responsible for large cancellations in the two-pion exchange nucleon-nucleon interaction, which are similar to those occuring in free pion-nucleon scattering.Comment: REVTEX style, 5 pages, 3 PostScrip figures compressed, tarred and uuencode

    Markov Chain Beam Randomization: a study of the impact of PLANCK beam measurement errors on cosmological parameter estimation

    Get PDF
    We introduce a new method to propagate uncertainties in the beam shapes used to measure the cosmic microwave background to cosmological parameters determined from those measurements. The method, which we call Markov Chain Beam Randomization, MCBR, randomly samples from a set of templates or functions that describe the beam uncertainties. The method is much faster than direct numerical integration over systematic `nuisance' parameters, and is not restricted to simple, idealized cases as is analytic marginalization. It does not assume the data are normally distributed, and does not require Gaussian priors on the specific systematic uncertainties. We show that MCBR properly accounts for and provides the marginalized errors of the parameters. The method can be generalized and used to propagate any systematic uncertainties for which a set of templates is available. We apply the method to the Planck satellite, and consider future experiments. Beam measurement errors should have a small effect on cosmological parameters as long as the beam fitting is performed after removal of 1/f noise.Comment: 17 pages, 23 figures, revised version with improved explanation of the MCBR and overall wording. Accepted for publication in Astronomy and Astrophysics (to appear in the Planck pre-launch special issue

    k-deformed Poincare algebras and quantum Clifford-Hopf algebras

    Full text link
    The Minkowski spacetime quantum Clifford algebra structure associated with the conformal group and the Clifford-Hopf alternative k-deformed quantum Poincare algebra is investigated in the Atiyah-Bott-Shapiro mod 8 theorem context. The resulting algebra is equivalent to the deformed anti-de Sitter algebra U_q(so(3,2)), when the associated Clifford-Hopf algebra is taken into account, together with the associated quantum Clifford algebra and a (not braided) deformation of the periodicity Atiyah-Bott-Shapiro theorem.Comment: 10 pages, RevTeX, one Section and references added, improved content

    NN Scattering: Chiral Predictions for Asymptotic Observables

    Get PDF
    We assume that the nuclear potential for distances larger than 2.5 fm is given just by the exchanges of one and two pions and, for the latter, we adopt a model based on chiral symmetry and subthreshold pion-nucleon amplitudes, which contains no free parameters. The predictions produced by this model for nucleon-nucleon observables are calculated and shown to agree well with both experiment and those due to phenomenological potentials.Comment: 16 pages, 12 PS figures included, to appear in Physical Review

    Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    Get PDF
    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10(17) m(-2). We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching. (C) 2015 Author(s).Dutch Polymer Institute (DPI), BISTABLE [704]; Fundacao para Ciencia e Tecnologia (FCT) through the research Instituto de Telecommunicacoes (IT-Lx); project Memristor based Adaptive Neuronal Networks (MemBrAiNN) [PTDC/CTM-NAN/122868/2010]; European Community Seventh Framework Programme FP7', ONE-P [212311]; Dutch Ministry of Education, Culture and Science (Gravity Program) [024.001.035]info:eu-repo/semantics/publishedVersio
    corecore