97 research outputs found

    Unimolecular reaction rates in solution and in the isolated molecule: Comparison of diphenyl butadiene nonradiative decay in solutions and supersonic jets

    Get PDF
    The recent study of diphenyl butadiene (DPB) in supersonic jets and in solution by Shepanski et al.(1) and by Courtney and Felming(2), respectively, provides an opportunity to compare the isomerization rates measured in the isolated molecule (jet) with those measured at very low viscosity in solution. These comparisons should shed light on the vibrational energy flows between “optical” and “reactive” modes in the isolated molecule and on the connection between activated, friction dependent, models of barrier crossing in solution,(3-5) and statistical RRK (or RRKM) theories of gas phase unimolecular reactions(6)

    Picosecond photofragment spectroscopy. I. Microcanonical state-to-state rates of the reaction NCNO→CN+NO

    Get PDF
    This paper, the first in a series of three papers, gives a detailed account of our studies on picosecond photofragment spectroscopy. The unimolecular reaction NCNO→CN+NO is examined in detail here. Microcanonical state‐to‐state rates are measured in molecular beams at different energies in the reagent NCNO using pump–probe techniques: one picosecond pulse initiates the reaction from an initial (v,J) state and a second pulse, delayed in time, monitors the CN radical product in a specific rovibrational state, or the reagent NCNO (transient absorption). The threshold energy for reaction is determined to be 17 083 cm^(−1) (bond energy=48.8 kcal/mol). Measured rates are found to be sharply dependent on the total energy of the reagent, but independent of the rotational quantum state of product CN. Results of transient absorption measurements are used to argue that the ground statepotential energy surface dominates the reaction in the range of excess energies studied. The energy dependence of the rates, k_(MC)(E), is compared with that predicted by statistical theories. Both standard RRKM (tight transition state) and phase space theory (loose transition state) fail to reproduce the data over the full range of energies studied, even though nascent product state distributions are known to be in accord with PST at these energies. Furthermore, k_(MC)(E) is not a strictly monotonically increasing function of energy but exhibits some structure which cannot be explained by simple statistical theories. We advance some explanations for this structure and deviations from statistical theories

    Application of unimolecular reaction rate theory for highly flexible transition states to the dissociation of NCNO into NC and NO

    Get PDF
    A recently described method for implementing RRKM theory for unimolecular reactions with highly flexible transition states is applied to the calculation of energy and angular momentum resolved rate constants and rotational–vibrational energy distributions for the reaction NCNO-->h nu NCNO*-->NCNO(vib. hot)-->NC+NO. The dissociation rate results are compared to the recent experimental results of Khundkar et al., and the vibrational and rotational distribution results are compared to the experimental values of Nadler et al. Comparison is also made with phase space theory calculations. The calculated rotational distributions at energies below the vibrational threshold of the products are the same as those of PST. At energies (2348, 2875 cm^−1) above this threshold energy the rovibrational distribution is in better agreement with the data than is that of PST. The need for obtaining more accurate ab initio potential energy surfaces is noted, particularly for treating reactions at still higher energies

    Picosecond mass spectrometry of a collisionless photodissociation reaction

    Get PDF
    We wish to report on the direct observation (in real time) of a photodissociation reaction under collisionless conditions. This is achieved by the technique of picosecond mass spectrometry in skimmed molecular beams

    Picosecond photofragment spectroscopy. I. Microcanonical state-to-state rates of the reaction NCNO→CN+NO

    Get PDF
    This paper, the first in a series of three papers, gives a detailed account of our studies on picosecond photofragment spectroscopy. The unimolecular reaction NCNO→CN+NO is examined in detail here. Microcanonical state‐to‐state rates are measured in molecular beams at different energies in the reagent NCNO using pump–probe techniques: one picosecond pulse initiates the reaction from an initial (v,J) state and a second pulse, delayed in time, monitors the CN radical product in a specific rovibrational state, or the reagent NCNO (transient absorption). The threshold energy for reaction is determined to be 17 083 cm^(−1) (bond energy=48.8 kcal/mol). Measured rates are found to be sharply dependent on the total energy of the reagent, but independent of the rotational quantum state of product CN. Results of transient absorption measurements are used to argue that the ground statepotential energy surface dominates the reaction in the range of excess energies studied. The energy dependence of the rates, k_(MC)(E), is compared with that predicted by statistical theories. Both standard RRKM (tight transition state) and phase space theory (loose transition state) fail to reproduce the data over the full range of energies studied, even though nascent product state distributions are known to be in accord with PST at these energies. Furthermore, k_(MC)(E) is not a strictly monotonically increasing function of energy but exhibits some structure which cannot be explained by simple statistical theories. We advance some explanations for this structure and deviations from statistical theories
    corecore