16 research outputs found
Minimum detection efficiency for a loophole-free atom-photon Bell experiment
In Bell experiments, one problem is to achieve high enough photodetection to
ensure that there is no possibility of describing the results via a local
hidden-variable model. Using the Clauser-Horne inequality and a two-photon
non-maximally entangled state, a photodetection efficiency higher than 0.67 is
necessary. Here we discuss atom-photon Bell experiments. We show that, assuming
perfect detection efficiency of the atom, it is possible to perform a
loophole-free atom-photon Bell experiment whenever the photodetection
efficiency exceeds 0.50.Comment: REVTeX4, 4 pages, 1 figur
Does Clauser-Horne-Shimony-Holt Correlation or Freedman-Clauser Correlation lead to the largest violation of Bell's Inequality?
An inequality is deduced from Einstein's locality and a supplementary
assumption. This inequality defines an experiment which can actually be
performed with present technology to test local realism. Quantum mechanics
violate this inequality a factor of 1.5. In contrast, quantum mechanics
violates previous inequalities (for example, Clauser-Horne-Shimony-Holt
inequality of 1969, Freedman-Clauser inequality of 1972, Clauser-Horne
inequality of 1974) by a factor of . Thus the magnitude of violation
of the inequality derived in this paper is approximately larger than
the magnitude of violation of previous inequalities. This result can be
particularly important for the experimental test of locality.Comment: 15 pages, LaTeX file, no figure