16 research outputs found

    Minimum detection efficiency for a loophole-free atom-photon Bell experiment

    Get PDF
    In Bell experiments, one problem is to achieve high enough photodetection to ensure that there is no possibility of describing the results via a local hidden-variable model. Using the Clauser-Horne inequality and a two-photon non-maximally entangled state, a photodetection efficiency higher than 0.67 is necessary. Here we discuss atom-photon Bell experiments. We show that, assuming perfect detection efficiency of the atom, it is possible to perform a loophole-free atom-photon Bell experiment whenever the photodetection efficiency exceeds 0.50.Comment: REVTeX4, 4 pages, 1 figur

    Does Clauser-Horne-Shimony-Holt Correlation or Freedman-Clauser Correlation lead to the largest violation of Bell's Inequality?

    Get PDF
    An inequality is deduced from Einstein's locality and a supplementary assumption. This inequality defines an experiment which can actually be performed with present technology to test local realism. Quantum mechanics violate this inequality a factor of 1.5. In contrast, quantum mechanics violates previous inequalities (for example, Clauser-Horne-Shimony-Holt inequality of 1969, Freedman-Clauser inequality of 1972, Clauser-Horne inequality of 1974) by a factor of 2\sqrt 2. Thus the magnitude of violation of the inequality derived in this paper is approximately 20.720.7% larger than the magnitude of violation of previous inequalities. This result can be particularly important for the experimental test of locality.Comment: 15 pages, LaTeX file, no figure
    corecore