21,204 research outputs found
Engineering analysis and design of a mechanism to simulate a sonic boom
Mechanism simulating vibrational and acoustic properties of sonic boom
Using microsimulation feedback for trip adaptation for realistic traffic in Dallas
This paper presents a day-to-day re-routing relaxation approach for traffic
simulations. Starting from an initial planset for the routes, the route-based
microsimulation is executed. The result of the microsimulation is fed into a
re-router, which re-routes a certain percentage of all trips. This approach
makes the traffic patterns in the microsimulation much more reasonable.
Further, it is shown that the method described in this paper can lead to strong
oscillations in the solutions.Comment: Accepted by International Journal of Modern Physics C. Complete
postscript version including figures in
http://www-transims.tsasa.lanl.gov/research_team/papers
Development and evaluation of a device to simulate a sonic boom
A device to simulate the vibrational and acoustical properties of a sonic boom was developed and evaluated. The design employed a moving circular diaphragm which produced pressure variations by altering the volume of an air-tight enclosure that was located adjacent to an acoustical test chamber. A review of construction oriented problems, along with their solutions, is presented. The simulator is shown to produce the effects of sonic booms having pressure signatures with rise times as low as 5 milliseconds, durations as short as 80 milliseconds, and overpressures as high as 2.5 pounds per square foot. Variations in the signatures are possible by independent adjustments of the simulator. The energy spectral density is also shown to be in agreement with theory and with actual measurements for aircraft
Lorentzian spin foam amplitudes: graphical calculus and asymptotics
The amplitude for the 4-simplex in a spin foam model for quantum gravity is
defined using a graphical calculus for the unitary representations of the
Lorentz group. The asymptotics of this amplitude are studied in the limit when
the representation parameters are large, for various cases of boundary data. It
is shown that for boundary data corresponding to a Lorentzian simplex, the
asymptotic formula has two terms, with phase plus or minus the Lorentzian
signature Regge action for the 4-simplex geometry, multiplied by an Immirzi
parameter. Other cases of boundary data are also considered, including a
surprising contribution from Euclidean signature metrics.Comment: 30 pages. v2: references now appear. v3: presentation greatly
improved (particularly diagrammatic calculus). Definition of "Regge state"
now the same as in previous work; signs change in final formula as a result.
v4: two references adde
Quantitative observations of the behavior of anomalous low altitude ClO in the Antarctic spring Stratosphere, 1987
During the second National Ozone Expedition ground-based observations at McMurdo Station Antarctica were performed which resulted in a second season's measurement of abnormally large amounts of ClO in the Antarctic spring stratosphere. The original measurements of 1986, in which the presence of this anomalous layer was first discovered, were limited in low altitude recovery of the ClO mixing ratio profile by the restrictions of the spectral bandwidth (256 MHz) which was used to measure the pressure-broadened ClO emission line shape. The 1987 measurements were marked by the use of twice the spectral bandpass employed the previous year, and allow a better characterization of the ClO mixing ratio profile in the critical altitude range 18 to 25 km. In-situ aircraft measurements of ClO made over the Palmer Peninsula during Aug. and Sept. of 1987 by Anderson, et al. effectively determined the important question of the ClO mixing ratio profile at altitudes inaccessible to our technique, below approximately 18 to 18.5 km. These flights did not penetrate further than 75 deg S, however, (vs 78 deg S for McMurdo) and were thus limited to coverage near the outer boundaries of the region of severest ozone depletion over Antarctica in 1987, did not reach an altitude convincingly above that of the peak mixing ratio for ClO, and were not able to make significant observations of the diurnal variation of ClO. The two techniques, and the body of data recovered by each, thus complement one another in producing a full picture of the anomalous ClO layer intimately connected with the region of Antarctic spring ozone depletion. An analysis is presented of the mixing ratio profile from approximately 18 to 45 km, the diurnal behavior, and the secular change in ClO over McMurdo Station during Sept. and early Oct. 1987
Daytime ClO over McMurdo in September 1987: Altitude profile retrieval accuracy
During the 1987 National Ozone Expedition, mm-wave emission line spectra of the 278.6 GHz rotational stratospheric ClO were observed at McMurdo Station, Antarctica. The results confirm the 1986 discovery of a lower stratospheric layer with approximately 100 times the normal amount of ClO; the 1987 observations, made with a spectrometer bandwidth twice that used in 1986, make possible a more accurate retrieval of the altitude profile of the low altitude component of stratospheric ClO from the pressure broadened line shape, down to approximately 16 km. The accuracy of the altitude profile retrievals is discussed, using the daytime (09:30 to 19:30, local time) data from 20 to 24 September, 1987 as an example. The signal strength averaged over this daytime period is approx. 85 percent of the midday peak value. The rate of ozone depletion implied by the observed ClO densities is also discussed
Holography in the EPRL Model
In this research announcement, we propose a new interpretation of the EPR
quantization of the BC model using a functor we call the time functor, which is
the first example of a CLa-ren functor. Under the hypothesis that the universe
is in the Kodama state, we construct a holographic version of the model.
Generalisations to other CLa-ren functors and connections to model category
theory are considered.Comment: research announcement. Latex fil
A magnetic damper for first mode vibration reduction in multimass flexible rotors
Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good
A New Recursion Relation for the 6j-Symbol
The 6j-symbol is a fundamental object from the re-coupling theory of SU(2)
representations. In the limit of large angular momenta, its asymptotics is
known to be described by the geometry of a tetrahedron with quantized lengths.
This article presents a new recursion formula for the square of the 6j-symbol.
In the asymptotic regime, the new recursion is shown to characterize the
closure of the relevant tetrahedron. Since the 6j-symbol is the basic building
block of the Ponzano-Regge model for pure three-dimensional quantum gravity, we
also discuss how to generalize the method to derive more general recursion
relations on the full amplitudes.Comment: 10 pages, v2: title and introduction changed, paper re-structured;
Annales Henri Poincare (2011
Coupling of spacetime atoms and spin foam renormalisation from group field theory
We study the issue of coupling among 4-simplices in the context of spin foam
models obtained from a group field theory formalism. We construct a
generalisation of the Barrett-Crane model in which an additional coupling
between the normals to tetrahedra, as defined in different 4-simplices that
share them, is present. This is realised through an extension of the usual
field over the group manifold to a five argument one. We define a specific
model in which this coupling is parametrised by an additional real parameter
that allows to tune the degree of locality of the resulting model,
interpolating between the usual Barrett-Crane model and a flat BF-type one.
Moreover, we define a further extension of the group field theory formalism in
which the coupling parameter enters as a new variable of the field, and the
action presents derivative terms that lead to modified classical equations of
motion. Finally, we discuss the issue of renormalisation of spin foam models,
and how the new coupled model can be of help regarding this.Comment: RevTeX, 18 pages, no figure
- …