41 research outputs found

    Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters

    Get PDF
    Three-dimensional lanthanide-organic frameworks formulated as (CH3)2NH2[Ln(pydc)2] · 1/2H2O [Ln3+ ) Eu3+ (1a) or Er3+ (1b); pydc2- corresponds to the diprotonated residue of 2,5-pyridinedicarboxylic acid (H2pydc)], [Er4(OH)4(pydc)4(H2O)3] ·H2O (2), and [PrIII 2PrIV 1.25O(OH)3(pydc)3] (3) have been isolated from typical solvothermal (1a and 1b in N,N-dimethylformamide - DMF) and hydrothermal (2 and 3) syntheses. Materials were characterized in the solid state using single-crystal X-ray diffraction, thermogravimetric analysis, vibrational spectroscopy (FT-IR and FT-Raman), electron microscopy, and CHN elemental analysis. While synthesis in DMF promotes the formation of centrosymmetric dimeric units, which act as building blocks in the construction of anionic ∞ 3{[Ln(pydc)2]-} frameworks having the channels filled by the charge-balancing (CH3)2NH2 + cations generated in situ by the solvolysis of DMF, the use of water as the solvent medium promotes clustering of the lanthanide centers: structures of 2 and 3 contain instead tetrameric [Er4(μ3-OH)4]8+ and hexameric |Pr6(μ3-O)2(μ3-OH)6| clusters which act as the building blocks of the networks, and are bridged by the H2-xpydcx- residues. It is demonstrated that this modular approach is reflected in the topological nature of the materials inducing 4-, 8-, and 14-connected uninodal networks (the nodes being the centers of gravity of the clusters) with topologies identical to those of diamond (family 1), and framework types bct (for 2) and bcu-x (for 3), respectively. The thermogravimetric studies of compound 3 further reveal a significant weight increase between ambient temperature and 450 °C with this being correlated with the uptake of oxygen from the surrounding environment by the praseodymium oxide inorganic core

    Functional properties of glass–ceramic composites containing industrial inorganic waste and evaluation of their biological compatibility

    No full text
    Abstract A study has been carried out on the feasibility of using Latvian industrial waste (peat cool ash, fly ash, aluminium scrap metal processing waste, metallurgical slag and waste cullet glass) and raw mineral materials (limeless clay) to produce dense, frost resistant, chemically durable glass–ceramic materials by powder technology. Highly crystalline and dense products (density: 2.50–2.94 g/cm3, water uptake: 1.3–4.3%) were fabricated from different mixtures by sintering at temperatures in the range of 1060–1160 °C. Glass–ceramics were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and four point bending strength test. Chemical durability, soluble salt crystallization as well as biological tests were carried out in order to evaluate the environmental stability and possible toxicity of the materials. The novel glass–ceramics developed here can find applications as building materials, such as wall tiles and for manufacturing industrial floors

    Atomistic models for CeO2(111), (110), and (100) nanoparticles, supported on yttrium-stabilized zirconia

    No full text
    Ceria is an important component in three-way catalysts for the treatment of automobile exhaust gases owing to its ability to store and release oxygen, a property known as the oxygen storage capacity. Much effort has been focused on increasing the OSC of ceria, and one avenue of exploration is the ability to fabricate CeO2-based catalysts, which expose reactive surfaces. Here we show how models for a polycrystalline CeO2 thin film, which expose the (111), (110), and dipolar (100) surfaces, can be synthesized. This is achieved by supporting the CeO2 thin film on an yttrium-stabilized zirconia substrate using a simulated amorphization and recrystallization strategy. In particular, the methodology generates models which reveal the atomistic structures present on the surface of the reactive faces and provides details of the grain-boundary structures, defects (vacancies, substitutionals, and clustering), and epitaxial relationships. Such models are an important first step in understanding the active sites at the surface of a catalytic material
    corecore