110 research outputs found
Slow Diffeomorphisms of a Manifold with Two Dimensions Torus Action
The uniform norm of the differential of the n-th iteration of a
diffeomorphism is called the growth sequence of the diffeomorphism. In this
paper we show that there is no lower universal growth bound for volume
preserving diffeomorphisms on manifolds with an effective two dimensions torus
action by constructing a set of volume-preserving diffeomorphisms with
arbitrarily slow growth.Comment: 12 p
Kick stability in groups and dynamical systems
We consider a general construction of ``kicked systems''. Let G be a group of
measure preserving transformations of a probability space. Given its
one-parameter/cyclic subgroup (the flow), and any sequence of elements (the
kicks) we define the kicked dynamics on the space by alternately flowing with
given period, then applying a kick. Our main finding is the following stability
phenomenon: the kicked system often inherits recurrence properties of the
original flow. We present three main examples. 1) G is the torus. We show that
for generic linear flows, and any sequence of kicks, the trajectories of the
kicked system are uniformly distributed for almost all periods. 2) G is a
discrete subgroup of PSL(2,R) acting on the unit tangent bundle of a Riemann
surface. The flow is generated by a single element of G, and we take any
bounded sequence of elements of G as our kicks. We prove that the kicked system
is mixing for all sufficiently large periods if and only if the generator is of
infinite order and is not conjugate to its inverse in G. 3) G is the group of
Hamiltonian diffeomorphisms of a closed symplectic manifold. We assume that the
flow is rapidly growing in the sense of Hofer's norm, and the kicks are
bounded. We prove that for a positive proportion of the periods the kicked
system inherits a kind of energy conservation law and is thus superrecurrent.
We use tools of geometric group theory and symplectic topology.Comment: Latex, 40 pages, revised versio
A two-cocycle on the group of symplectic diffeomorphisms
We investigate a two-cocycle on the group of symplectic diffeomorphisms of an
exact symplectic manifolds defined by Ismagilov, Losik, and Michor and
investigate its properties. We provide both vanishing and non-vanishing results
and applications to foliated symplectic bundles and to Hamiltonian actions of
finitely generated groups.Comment: 16 pages, no figure
Quelques plats pour la m\'etrique de Hofer
We show, by an elementary and explicit construction, that the group of
Hamiltonian diffeomorphisms of certain symplectic manifolds, endowed with
Hofer's metric, contains subgroups quasi-isometric to Euclidean spaces of
arbitrary dimension.Comment: 9 pages, minor change
Continuous Wavelets on Compact Manifolds
Let be a smooth compact oriented Riemannian manifold, and let
be the Laplace-Beltrami operator on . Say 0 \neq f
\in \mathcal{S}(\RR^+), and that . For , let
denote the kernel of . We show that is
well-localized near the diagonal, in the sense that it satisfies estimates akin
to those satisfied by the kernel of the convolution operator on
\RR^n. We define continuous -wavelets on , in such a
manner that satisfies this definition, because of its localization
near the diagonal. Continuous -wavelets on are analogous to
continuous wavelets on \RR^n in \mathcal{S}(\RR^n). In particular, we are
able to characterize the Hlder continuous functions on by
the size of their continuous wavelet transforms, for
Hlder exponents strictly between 0 and 1. If is the torus
\TT^2 or the sphere , and (the ``Mexican hat''
situation), we obtain two explicit approximate formulas for , one to be
used when is large, and one to be used when is small
Homology class of a Lagrangian Klein bottle
It is shown that an embedded Lagrangian Klein bottle represents a non-trivial
mod 2 homology class in a compact symplectic four-manifold with
. (In versions 1 and 2, the last assumption was missing.
A counterexample to this general claim and the first proof of the corrected
result have been found by Vsevolod Shevchishin.) As a corollary one obtains
that the Klein bottle does not admit a Lagrangian embedding into the standard
symplectic four-space.Comment: Version 3 - completely rewritten to correct a mistake; Version 4 -
minor edits, added references; AMSLaTeX, 6 page
On the Use of Minimum Volume Ellipsoids and Symplectic Capacities for Studying Classical Uncertainties for Joint Position-Momentum Measurements
We study the minimum volume ellipsoid estimator associates to a cloud of
points in phase space. Using as a natural measure of uncertainty the symplectic
capacity of the covariance ellipsoid we find that classical uncertainties obey
relations similar to those found in non-standard quantum mechanics
On the connection between the number of nodal domains on quantum graphs and the stability of graph partitions
Courant theorem provides an upper bound for the number of nodal domains of
eigenfunctions of a wide class of Laplacian-type operators. In particular, it
holds for generic eigenfunctions of quantum graph. The theorem stipulates that,
after ordering the eigenvalues as a non decreasing sequence, the number of
nodal domains of the -th eigenfunction satisfies . Here,
we provide a new interpretation for the Courant nodal deficiency in the case of quantum graphs. It equals the Morse index --- at a
critical point --- of an energy functional on a suitably defined space of graph
partitions. Thus, the nodal deficiency assumes a previously unknown and
profound meaning --- it is the number of unstable directions in the vicinity of
the critical point corresponding to the -th eigenfunction. To demonstrate
this connection, the space of graph partitions and the energy functional are
defined and the corresponding critical partitions are studied in detail.Comment: 22 pages, 6 figure
Symplectic geometry of quantum noise
We discuss a quantum counterpart, in the sense of the Berezin-Toeplitz
quantization, of certain constraints on Poisson brackets coming from "hard"
symplectic geometry. It turns out that they can be interpreted in terms of the
quantum noise of observables and their joint measurements in operational
quantum mechanics. Our findings include various geometric mechanisms of quantum
noise production and a noise-localization uncertainty relation. The methods
involve Floer theory and Poisson bracket invariants originated in function
theory on symplectic manifolds.Comment: Revised version, 57 pages, 3 figures. Incorporates arXiv:1203.234
- …