15,399 research outputs found

    Landau level splitting due to graphene superlattices

    Full text link
    The Landau level spectrum of graphene superlattices is studied using a tight-binding approach. We consider non-interacting particles moving on a hexagonal lattice with an additional one-dimensional superlattice made up of periodic square potential barriers, which are oriented along the zig-zag or along the arm-chair directions of graphene. In the presence of a perpendicular magnetic field, such systems can be described by a set of one-dimensional tight-binding equations, the Harper equations. The qualitative behavior of the energy spectrum with respect to the strength of the superlattice potential depends on the relation between the superlattice period and the magnetic length. When the potential barriers are oriented along the arm-chair direction of graphene, we find for strong magnetic fields that the zeroth Landau level of graphene splits into two well separated sublevels, if the width of the barriers is smaller than the magnetic length. In this situation, which persists even in the presence of disorder, a plateau with zero Hall conductivity can be observed around the Dirac point. This Landau level splitting is a true lattice effect that cannot be obtained from the generally used continuum Dirac-fermion model.Comment: 12 pages, 9 figure

    Shear viscosity to entropy density ratio in nuclear multifragmentation

    Full text link
    Nuclear multifragmentation in intermediate energy heavy ion collisions has long been associated with liquid-gas phase transition. We calculate the shear viscosity to entropy density ratio eta/s for an equilibrated system of nucleons and fragments produced in multifragmentation within an extended statistical multifragmentation model. The temperature dependence of eta/s exhibits surprisingly similar behavior as that for water. In the coexistence phase of fragments and light particles, the ratio eta/s reaches a minimum of comparable depth as that for water in the vicinity of the critical temperature for liquid-gas phase transition. The effects of freeze-out volume and surface symmetry energy on eta/s in multifragmentation are studied.Comment: 5 pages, 5 figures, to appear in PR
    • …
    corecore