966 research outputs found

    Complejidad y dualidad en el sistema Tierra

    Get PDF

    The District Energy-Efficient Retrofitting of Torrelago (Laguna de Duero – Spain)

    Get PDF
    The urban growth is estimated to reach up the 66 % by 2050 and consequently the need of resources within the cities will increase significantly. This, combined with the 40 % of energy consumption and 36 % of CO2 emissions of the building sector, makes necessary to accelerate the transition towards more sustainable cities. The CITyFiED project contributes to this transition, aiming to develop an innovative and holistic methodological approach for energy-efficient district renovation and deliver three large scale demonstration cases in the cities of Lund (Sweden), Laguna de Duero (Spain) and Soma (Turkey). CITyFiED methodology consists of several phases that ease the decision-making tasks towards the district renovation, considering the energy efficiency as the main pillar and local authorities as clients. For the case of Torrelago district (Spain) the intervention consists of a set of energy conservative measures including the facąde retrofitting of 143.025 m2 of living space in 31 twelve-storey buildings; the renovation of the district heating network with a new biomass thermal plant; the integration of renewable energy sources, including a micro-cogeneration system, and the installation of individual smart meters. After the renovation action, one-year monitoring campaign is ongoing. The CITyFiED monitoring platform will collect information from the energy systems and deliver environmental, technical, economic and social key performance indicators by March 2019. At the end of the project the achievement of the predefined goals will be verified: Up to 36 % of energy saving and 3,429 tons-CO2/yr emissions saving covering the 59,4 % of the energy consumption with renewable sources.The research and results presented in this paper evolve from activities related to the CITyFiED project, which has received funding from the European Commission under the Grant Agreement no. 609129. This article is the result of cooperative research work of many experts from various countries and we would like to gratefully acknowledge the rest of the CITyFiED partners

    Collagenase nanocapsules: An approach to fibrosis treatment

    Get PDF
    Fibrosis is a common lesion in different pathologic diseases and defined by the excessive accumulation ofcollagen. Different approaches have been used to treat different conditions characterized by fibrosis. TheFDA and EMA approved the use of collagenase to treat palmar fibromatosis (Dupuytren’s contracture).The EMA approved additionally its use in severe Peyronie’s disease, but it has been used off label in otherconditions [1,2]. The approved treatment includes up to three (in palmar fibromatosis) or up to eight (inpenile fibromatosis) injections followed by finger extension or penile modeling procedures, typicallycausing severe pain. Frequent single injections are adequate to treat palmar fibromatosis [3]. The needto repeatedly inject doses of this enzyme can be due to the labile nature of collagenase, which exhibitsa complete activity loss after a short period of time. This study presents a novel strategy to manage thisenzyme based on the synthesis of polymeric nanocapsules that contain collagenase encapsulated withintheir matrix. These nanocapsules have been engineered for achieving a gradual release of the encapsu-lated enzyme for a longer time, which can be up to ten days. The efficacy of these nanocapsules has beentested in a murine model of local dermal fibrosis, and the results demonstrate a reduction in fibrosisgreater than that with the injection of free enzyme; this type of treatment showed a significant improve-ment compared to conventional therapy of free collagenase
    corecore