161 research outputs found
Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid
Sub-Nyquist time frequency packing technique was demonstrated for the first
time in a super channel field trial transmission over long-haul distances. The
technique allows a limited spectral occupancy even with low order modulation
formats. The transmission was successfully performed on a deployed Australian
link between Sydney and Melbourne which included 995 km of uncompensated SMF
with coexistent traffic. 40 and 100 Gb/s co-propagating channels were
transmitted together with the super-channel in a 50 GHz ITU-T grid without
additional penalty. The super-channel consisted of eight sub-channels with
low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness
and reduced complexity with respect to higher order formats. At the receiver
side, coherent detection was used together with iterative maximum-a-posteriori
(MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully
transmitted between Sydney and Melbourne within four 50GHz WSS channels (200
GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8
dB, comparable to the OSNR of the installed 100 Gb/s channels. The system
reliability was proven through long term measurements. In addition, by closing
the link in a loop back configuration, a potential SE*d product of 9254
bit/s/Hz*km was achieved
Effective method for Blind Adaptive CD Compensation and Estimation in a DSP-based Coherent Optical Systems
A blind adaptive chromatic dispersion compensation and estimation algorithm is proposed
and experimentally validated. The method is based on a Frequency Domain Equalizer, a
Time Domain Equalizer and an Optical Performance Monitoring in a loop configuration
Photonic Combinatorial Network for Contention Management in 160 Gb/s Interconnection Networks based on All-Optical 2x2 Switching Elements
A modular photonic interconnection network based on a combination of basic 2Ă—2 all-optical nodes including a photonic combinatorial network for the packet contention management is presented. The proposed architecture is synchronous, can handle optical time division multiplexed (OTDM) packets up to 160 Gb/s, exhibits self-routing capability, and very low switching latency. In such a scenario, OTDM has to be preferred to wavelength division multiplexing (WDM) because in the former case, the instantaneous packet power carries the information related to only one bit, making the signal processing based on instantaneous nonlinear interactions between packets and control signals more efficient. Moreover, OTDM can be used in interconnection networks without caring about the propagation impairments because of the very short length (< 100 m) of the links in these networks. For such short-range networks, the packet synchronization can be solved at the network boundary in the electronic domain without the need of complex optical synchronizers. In this paper, we focus on a photonic combinatorial network able to detect the contentions, and to optically drive the contention resolution block and the switching control block. The implementation of the photonic combinatorial network is based on semiconductor devices, which makes the solution very promising in terms of compactness, stability, and power consumption. This implementation represents the first example of complex photonic combinatorial network for ultrafast digital processing. The network performance has been investigated for bit streams at 10 Gb/s in terms of bit error rate (BER) and contrast ratio. Moreover, the suitability of the 2Ă—2 photonic node architecture exploiting the earlier mentioned combinatorial network has been verified at a bit rate up to 160 Gb/s. In this way, the potential of photonic digital processing for the next generation broad band and flexible interconnection networks has been demonstrated
On the Filter Narrowing Issues in Elastic Optical Networks
This paper describes the problematic filter narrowing effect in the context of next-generation elastic optical networks. First, three possible scenarios are introduced: the transition from an actual fixed-grid to a flexigrid network, the generic full flexi-grid network, and a proposal for a filterless optical network. Next, we investigate different transmission techniques and evaluate the penalty introduced by the filtering effect when considering Nyquist wavelength division multiplexing, single side-band direct-detection orthogonal frequency division multiplexing, and symbol-rate variable dual polarization quadrature amplitude modulation. Also, different approaches to compensate for the filter narrowing effect are discussed. Results show that the specific needs per each scenario can be fulfilled by the aforementioned technologies and techniques or a combination of them, when balancing performance, network reach, and cost
First demonstration of multi-vendor and multi-domain EON with S-BVT and control interoperability over Pan-European testbed
The operation of multi-domain and multi-vendor EONs can be achieved by interoperable Sliceable Bandwidth Variable Transponders, a GMPLS / BGP-LS-based control plane and a planning tool. This paper reports the first full demonstration and validation this end-to-end architecture
- …