91 research outputs found
Simple proof of gauge invariance for the S-matrix element of strong-field photoionization
The relationship between the length gauge (LG) and the velocity gauge (VG)
exact forms of the photoionization probability amplitude is considered. Our
motivation for this paper comes from applications of the Keldysh-Faisal-Reiss
(KFR) theory, which describes atoms (or ions) in a strong laser field (in the
nonrelativistic approach, in the dipole approximation). On the faith of a
certain widely-accepted assumption, we present a simple proof that the
well-known LG form of the exact photoionization (or photodetachment)
probability amplitude is indeed the gauge-invariant result. In contrast, to
obtain the VG form of this probability amplitude, one has to either (i) neglect
the well-known Goeppert-Mayer exponential factor (which assures gauge
invariance) during all the time evolution of the ionized electron or (ii) put
some conditions on the vector potential of the laser field.Comment: The paper was initially submitted (in a previous version) on 16
October 2006 to J. Phys. A and rejected. This is the extended version (with 2
figures), which is identical to the paper published online on 12 December
2007 in Physica Script
Hybrid heterostructures with superconducting/antiferromagnetic interfaces
We report on structural, DC, X-ray and neutron studies of hybrid
superconducting mesa-heterostructures with a cuprate antiferromagnetic
interlayer Ca1-xSrxCuO2 (CSCO). The upper electrode was bilayer Nb/Au
superconductor and copper oxide superconductor YBa2Cu3O7 (YBCO) was the bottom
electrode. It was experimentally shown that during the epitaxial growth of the
two films YBCO and CSCO a charge carrier doping takes place in the CSCO
interlayer with a depth about 20 nm. The conductivity of the doped part of CSCO
layer is close to the metal type, while the reference CSCO film, deposited
directly on NdGaO3 substrate, behaves as Mott insulator with the hopping
conductivity. The interface Au/CSCO is clearly seen on bright-field image of
the cross-section of heterostructure and gives the main contribution to the
total resistance of mesa-heterostructure.Comment: 16 pages, 9 figure
Selective excitation of metastable atomic states by femto- and attosecond laser pulses
The possibility of achieving highly selective excitation of low metastable
states of hydrogen and helium atoms by using short laser pulses with reasonable
parameters is demonstrated theoretically. Interactions of atoms with the laser
field are studied by solving the close-coupling equations without
discretization. The parameters of laser pulses are calculated using different
kinds of optimization procedures. For the excitation durations of hundreds of
femtoseconds direct optimization of the parameters of one and two laser pulses
with Gaussian envelopes is used to introduce a number of simple schemes of
selective excitation. To treat the case of shorter excitation durations,
optimal control theory is used and the calculated optimal fields are
approximated by sequences of pulses with reasonable shapes. A new way to
achieve selective excitation of metastable atomic states by using sequences of
attosecond pulses is introduced.Comment: To be published in Phys. Rev. A, 10 pages, 3 figure
X-ray plasma diagnostics
Results and methods are given for the investigation of hot laboratory and astrophysical plasmas parameters in a soft X-ray region λ = 1-40 Å. Line spectra of multiply charged ions are usually studied experimentally, and relative intensities of spectral lines are measured. Achievements of modern physics of electronion collisions and theoretical spectroscopy make it possible to obtain for transient plasma the electronic temperature, density, ionization stage, and to investigate time and spatial distributions of these parameters
- …