91 research outputs found

    Simple proof of gauge invariance for the S-matrix element of strong-field photoionization

    Full text link
    The relationship between the length gauge (LG) and the velocity gauge (VG) exact forms of the photoionization probability amplitude is considered. Our motivation for this paper comes from applications of the Keldysh-Faisal-Reiss (KFR) theory, which describes atoms (or ions) in a strong laser field (in the nonrelativistic approach, in the dipole approximation). On the faith of a certain widely-accepted assumption, we present a simple proof that the well-known LG form of the exact photoionization (or photodetachment) probability amplitude is indeed the gauge-invariant result. In contrast, to obtain the VG form of this probability amplitude, one has to either (i) neglect the well-known Goeppert-Mayer exponential factor (which assures gauge invariance) during all the time evolution of the ionized electron or (ii) put some conditions on the vector potential of the laser field.Comment: The paper was initially submitted (in a previous version) on 16 October 2006 to J. Phys. A and rejected. This is the extended version (with 2 figures), which is identical to the paper published online on 12 December 2007 in Physica Script

    Hybrid heterostructures with superconducting/antiferromagnetic interfaces

    Full text link
    We report on structural, DC, X-ray and neutron studies of hybrid superconducting mesa-heterostructures with a cuprate antiferromagnetic interlayer Ca1-xSrxCuO2 (CSCO). The upper electrode was bilayer Nb/Au superconductor and copper oxide superconductor YBa2Cu3O7 (YBCO) was the bottom electrode. It was experimentally shown that during the epitaxial growth of the two films YBCO and CSCO a charge carrier doping takes place in the CSCO interlayer with a depth about 20 nm. The conductivity of the doped part of CSCO layer is close to the metal type, while the reference CSCO film, deposited directly on NdGaO3 substrate, behaves as Mott insulator with the hopping conductivity. The interface Au/CSCO is clearly seen on bright-field image of the cross-section of heterostructure and gives the main contribution to the total resistance of mesa-heterostructure.Comment: 16 pages, 9 figure

    Selective excitation of metastable atomic states by femto- and attosecond laser pulses

    Full text link
    The possibility of achieving highly selective excitation of low metastable states of hydrogen and helium atoms by using short laser pulses with reasonable parameters is demonstrated theoretically. Interactions of atoms with the laser field are studied by solving the close-coupling equations without discretization. The parameters of laser pulses are calculated using different kinds of optimization procedures. For the excitation durations of hundreds of femtoseconds direct optimization of the parameters of one and two laser pulses with Gaussian envelopes is used to introduce a number of simple schemes of selective excitation. To treat the case of shorter excitation durations, optimal control theory is used and the calculated optimal fields are approximated by sequences of pulses with reasonable shapes. A new way to achieve selective excitation of metastable atomic states by using sequences of attosecond pulses is introduced.Comment: To be published in Phys. Rev. A, 10 pages, 3 figure

    X-ray plasma diagnostics

    No full text
    Results and methods are given for the investigation of hot laboratory and astrophysical plasmas parameters in a soft X-ray region λ = 1-40 Å. Line spectra of multiply charged ions are usually studied experimentally, and relative intensities of spectral lines are measured. Achievements of modern physics of electronion collisions and theoretical spectroscopy make it possible to obtain for transient plasma the electronic temperature, density, ionization stage, and to investigate time and spatial distributions of these parameters
    • …
    corecore