2,462 research outputs found
Breathing mode in an improved transport approach
The nuclear breathing-mode giant monopole resonance is studied within an
improved relativistic Boltzmann-Uehling-Uhlenbeck (BUU) transport approach. As
a new feature, the numerical treatment of ground state nuclei and their
phase-space evolution is realized with the same semiclassical energy density
functional. With this new method a very good stability of ground state nuclei
in BUU simulations is achieved. This is important in extracting clear
breathing-mode signals for the excitation energy and, in particular, for the
lifetime from transport theoretical studies including mean-field and
collisional effects.Comment: 33 pages, 11 figures, accepted for publication in Phys. Rev.
Strongly damped nuclear collisions: zero or first sound ?
The relaxation of the collective quadrupole motion in the initial stage of a
central heavy ion collision at beam energies AMeV is studied
within a microscopic kinetic transport model. The damping rate is shown to be a
non-monotonic function of E_{lab} for a given pair of colliding nuclei. This
fact is interpreted as a manifestation of the zero-to-first sound transition in
a finite nuclear system.Comment: 15 pages, 4 figure
Ring-shaped spatial pattern of exciton luminescence formed due to the hot carrier transport in a locally photoexcited electron-hole bilayer
A consistent explanation of the formation of a ring-shaped pattern of exciton
luminescence in GaAs/AlGaAs double quantum wells is suggested. The pattern
consists of two concentric rings around the laser excitation spot. It is shown
that the luminescence rings appear due to the in-layer transport of hot charge
carriers at high photoexcitation intensity. Interestingly, one of two causes of
this transport might involve self-organized criticality (SOC) that would be the
first case of the SOC observation in semiconductor physics. We test this cause
in a many-body numerical model by performing extensive molecular dynamics
simulations. The results show good agreement with experiments. Moreover, the
simulations have enabled us to identify the particular kinetic processes
underlying the formation of each of these two luminescence rings.Comment: 14 pages, 16 figures. Final versio
Nuclear magnetic resonance spectrum of 31P donors in silicon quantum computer
The influence of the electric field created by a gate potential of the
silicon quantum computer on the hyperfine interaction constant (HIC) is
obtained. The errors due to technological inaccuracy of location of donor atoms
under a gate are evaluated. The energy spectra of electron-nuclear spin system
of two interacting donor atoms with various values of HIC are calculated. The
presence of two pairs of anticrossing levels in the ground electronic state is
shown. Parameters of the structure at which errors rate can be greatly
minimized are found.Comment: 12 pages,, 3 figure
Cross-talk compensation of hyperfine control in donor qubit architectures
We theoretically investigate cross-talk in hyperfine gate control of
donor-qubit quantum computer architectures, in particular the Kane proposal. By
numerically solving the Poisson and Schr\"{o}dinger equations for the gated
donor system, we calculate the change in hyperfine coupling and thus the error
in spin-rotation for the donor nuclear-electron spin system, as the gate-donor
distance is varied. We thus determine the effect of cross-talk - the
inadvertent effect on non-target neighbouring qubits - which occurs due to
closeness of the control gates (20-30nm). The use of compensation protocols is
investigated, whereby the extent of crosstalk is limited by the application of
compensation bias to a series of gates. In light of these factors the
architectural implications are then considered.Comment: 15 pages, 22 figures, submitted to Nanotechnolog
- …