1,414,984 research outputs found

    Joint Formation of QSOs and Spheroids: QSOs as clocks of star formation in Spheroids

    Full text link
    Direct and indirect observational evidence leads to the conclusion that high redshift QSOs did shine in the core of early type proto-galaxies during their main episode of star formation. Exploting this fact, we derive the rate of formation of this kind of stellar systems at high redshift by using the QSO Luminosity Function. The elemental proportions in elliptical galaxies, the descendents of the QSO hosts, suggest that the star formation was more rapid in more massive objects. We show that this is expected to occur in Dark Matter haloes, when the processes of cooling and heating is considered. This is also confirmed by comparing the observed sub-mm counts to those derived by coupling the formation rate and the star formation rate of the spheroidal galaxies with a detailed model for their SED evolution. In this scenario SCUBA galaxies and Lyman Break Galaxies are early type proto-galaxies forming the bulk of their stars before the onset of QSO activity.Comment: 13 pages, 8 figures, accepted by MNRAS, major revision of the formalis

    Localization and superconducting proximity effect in sandwiched potassium films

    Full text link
    Thin films of alkali metals when sandwiched at both surfaces by thin metal films loose their conductance. The superconducting proximity effect is used to investigate the change in the alkali film. On the length scale of the film thickness the electronic properties of the alkali film do not change noticeably although its conductance is dramatically reduced, corresponding to localized electrons.Comment: 13 pages, 5 figure

    Probability tables

    Full text link
    The idea of writing a table of probabilistic data for a quantum or classical system, and of decomposing this table in a compact way, leads to a shortcut for Hardy's formalism, and gives new perspectives on foundational issues.Comment: LaTeX, 17 pages, 1 figure. Contribution to the conference ``Quantum Theory: Reconsideration of Foundations 2'' (Vaexjoe, Sweden, 2003). To appear in the Proceedings (the notation in this version has been slightly modified, and the references updated

    Motion of vortices in type II superconductors

    Get PDF
    The methods of formal asymptotics are used to examine the behaviour of a system of curvilinear vortices in a type II superconductor as the thickness of the vortex cores tends to zero. The vortices then appear as singularities in the field equation and are analagous to line vortices in inviscid hydrodynamics. A local analysis near each vortex core gives an equation of motion governing the evolution of these singularities

    Entanglement renormalization

    Get PDF
    In the context of real-space renormalization group methods, we propose a novel scheme for quantum systems defined on a D-dimensional lattice. It is based on a coarse-graining transformation that attempts to reduce the amount of entanglement of a block of lattice sites before truncating its Hilbert space. Numerical simulations involving the ground state of a 1D system at criticality show that the resulting coarse-grained site requires a Hilbert space dimension that does not grow with successive rescaling transformations. As a result we can address, in a quasi-exact way, tens of thousands of quantum spins with a computational effort that scales logarithmically in the system's size. The calculations unveil that ground state entanglement in extended quantum systems is organized in layers corresponding to different length scales. At a quantum critical point, each rellevant length scale makes an equivalent contribution to the entanglement of a block with the rest of the system.Comment: 4 pages, 4 figures, updated versio

    Grover Algorithm with zero theoretical failure rate

    Get PDF
    In standard Grover's algorithm for quantum searching, the probability of finding the marked item is not exactly 1. In this Letter we present a modified version of Grover's algorithm that searches a marked state with full successful rate. The modification is done by replacing the phase inversion by two phase rotation through angle ϕ\phi. The rotation angle is given analytically to be ϕ=2arcsin(sinπ(4J+6)sinβ)\phi=2 \arcsin(\sin{\pi\over (4J+6)}\over \sin\beta), where sinβ=1N\sin\beta={1\over \sqrt{N}}, NN the number of items in the database, and JJ an integer equal to or greater than the integer part of (π2β)/(2β)({\pi\over 2}-\beta)/(2\beta). Upon measurement at (J+1)(J+1)-th iteration, the marked state is obtained with certainty.Comment: 5 pages. Accepted for publication in Physical Review

    Solitary wave complexes in two-component mixture condensates

    Full text link
    Axisymmetric three-dimensional solitary waves in uniform two-component mixture Bose-Einstein condensates are obtained as solutions of the coupled Gross-Pitaevskii equations with equal intracomponent but varying intercomponent interaction strengths. Several families of solitary wave complexes are found: (1) vortex rings of various radii in each of the components, (2) a vortex ring in one component coupled to a rarefaction solitary wave of the other component, (3) two coupled rarefaction waves, (4) either a vortex ring or a rarefaction pulse coupled to a localised disturbance of a very low momentum. The continuous families of such waves are shown in the momentum-energy plane for various values of the interaction strengths and the relative differences between the chemical potentials of two components. Solitary wave formation, their stability and solitary wave complexes in two-dimensions are discussed.Comment: 4 pages, 2 figures, 2 table
    corecore