41 research outputs found
Positronium reflection and positronium beams
Specular reflection of positronium, Ps was observed and that there is adequate intensity at higher energies to make further study worthwhile was established. The scattering appears to be restricted to the outermost surface with a mean free path of (0.75 + or - 0.15)A for Ps in LiF(100). With a greater intensity Ps beam one should see higher order diffraction beams as the result of the periodicity of the surface. Ps diffraction thus offers the possibility of being a novel and valuable probe to study the outermost surface and to study adsorbants on it. Two methods for producing Ps beams are described
Recommended from our members
An Investigation of Positrons Interacting With Solid Argon, Krypton and Xenon
With this article we intend to shed some light on all the important characteristics of the up-to-date most efficient positron moderators, the rare gas solids. We stress on the importance of the impurities in the performance of the solid rare gas moderators. The impurity factor is linked with the crystalline changes to explain the effect of annealing, and demonstrate the role of impurities in the endurance. Significant increase in the low energy positron yield is observed after repeated anneals. The positron energy distributions from Ar, Kr, and Xe moderators are measured to be about 2 eV (FWHM)
Recommended from our members
Description of the intense, low energy, monoenergetic positron beam at Brookhaven
An intense (4 x 10/sup 7/ s/sup -1/), low energy (approx. =1.0 eV), monoenergetic (..delta..E approx. = 75 MeV) beam of positrons has been built at the Brookhaven National Laboratory. This flux is more than 10 times greater than any existing beam from radioactive sources. Plans are underway to increase further the flux by more than an order of magnitude. The intense low energy positron beam is made by utilizing the High Flux Beam Reactor at Brookhaven to produce the isotope /sup 64/Cu with an activity of 40 curies of positrons. Source moderation techniques are utilized to produce the low energy positron beam from the high energy positrons emitted from /sup 64/Cu. 31 refs., 7 figs
Low-energy quenching of positronium by helium
Very low-energy scattering of orthopositronium by helium has been
investigated for simultaneous study of elastic cross section and pick-off
quenching rate using a model exchange potential. The present calculational
scheme, while agrees with the measured cross section of Skalsey et al,
reproduces successfully the parameter ^ 1Z_{\makebox{eff}}, the effective
number of electrons per atom in a singlet state relative to the positron.
Together with the fact that this model potential also leads to an agreement
with measured medium energy cross sections of this system, this study seems to
resolve the long-standing discrepancy at low energies among different
theoretical calculations and experimental measurements.Comment: 4 latex pages, 3 postscript figure
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
Estimating Contact Process Saturation in Sylvatic Transmission of Trypanosoma cruzi in the United States
Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the -electron
energy spectrum near the endpoint of tritium -decay. An integral energy analysis will be performed
by an electro-static spectrometer (“Main Spectrometer”), an ultra-high vacuum vessel with a length
of 23.2 m, a volume of 1240m3, and a complex inner electrode system with about 120 000 individual
parts. The strong magnetic field that guides the -electrons is provided by super-conducting
solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum
gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of
non-evaporable getter strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out at 300 C, and the
performance of this system are presented in detail. The vacuum system has to maintain a pressure in
the 10 mbar range. It is demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start at the end of 2016