1,471 research outputs found

    On the superfluidity of classical liquid in nanotubes

    Full text link
    In 2001, the author proposed the ultra second quantization method. The ultra second quantization of the Schr\"odinger equation, as well as its ordinary second quantization, is a representation of the N-particle Schr\"odinger equation, and this means that basically the ultra second quantization of the equation is the same as the original N-particle equation: they coincide in 3N-dimensional space. We consider a short action pairwise potential V(x_i -x_j). This means that as the number of particles tends to infinity, NN\to\infty, interaction is possible for only a finite number of particles. Therefore, the potential depends on N in the following way: VN=V((xixj)N1/3)V_N=V((x_i-x_j)N^{1/3}). If V(y) is finite with support ΩV\Omega_V, then as NN\to\infty the support engulfs a finite number of particles, and this number does not depend on N. As a result, it turns out that the superfluidity occurs for velocities less than min(λcrit,h2mR)\min(\lambda_{\text{crit}}, \frac{h}{2mR}), where λcrit\lambda_{\text{crit}} is the critical Landau velocity and R is the radius of the nanotube.Comment: Latex, 20p. The text is presented for the International Workshop "Idempotent and tropical mathematics and problems of mathematical physics", Independent University of Moscow, Moscow, August 25--30, 2007 and to be published in the Russian Journal of Mathematical Physics, 2007, vol. 15, #

    Quantum Correction to Conductivity Close to Ferromagnetic Quantum Critical Point in Two Dimensions

    Full text link
    We study the temperature dependence of the conductivity due to quantum interference processes for a two-dimensional disordered itinerant electron system close to a ferromagnetic quantum critical point. Near the quantum critical point, the cross-over between diffusive and ballistic regimes of quantum interference effects occurs at a temperature T=1/τγ(EFτ)2 T^{\ast}=1/\tau \gamma (E_{F}\tau)^{2}, where γ\gamma is the parameter associated with the Landau damping of the spin fluctuations, τ\tau is the impurity scattering time, and EFE_{F} is the Fermi energy. For a generic choice of parameters, TT^{\ast} is smaller than the nominal crossover scale 1/τ1/\tau . In the ballistic quantum critical regime, the conductivity behaves as T1/3T^{1/3}.Comment: 5 pages, 1 figur

    Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts

    Full text link
    We show that G\"odel's negative results concerning arithmetic, which date back to the 1930s, and the ancient "sand pile" paradox (known also as "sorites paradox") pose the questions of the use of fuzzy sets and of the effect of a measuring device on the experiment. The consideration of these facts led, in thermodynamics, to a new one-parameter family of ideal gases. In turn, this leads to a new approach to probability theory (including the new notion of independent events). As applied to economics, this gives the correction, based on Friedman's rule, to Irving Fisher's "Main Law of Economics" and enables us to consider the theory of debt crisis.Comment: 48p., 14 figs., 82 refs.; more precise mathematical explanations are added. arXiv admin note: significant text overlap with arXiv:1111.610

    In-plane current-voltage characteristics and oscillatory Josephson-vortex flow resistance in La-free Bi2+x_{2+x}Sr2x_{2-x}CuO6+δ_{6+\delta} single crystals in high magnetic fields

    Full text link
    We have investigated the in-plane I(V)I(V) characteristics and the Josephson vortex flow resistance in high-quality La-free Bi2+x_{2+x}Sr2x_{2-x}CuO6+δ_{6+\delta} (Bi2201) single crystals in parallel and tilted magnetic fields at temperatures down to 40 mK. For parallel magnetic fields below the resistive upper critical field Hc2H^{*}_{c2}, the I(V)I(V) characteristic obey a power-law with a smooth change with increasing magnetic-field of the exponent from above 5 down to 1. In contrast to the double-layer cuprate Bi2212, the observed smooth change suggests that there is no change in the mechanism of dissipation (no Kosterlitz-Thouless transition) over the range of temperatures investigated. At small angles between the applied field and the abab-plane, prominent current steps in the I(V)I(V) characteristics and periodic oscillations of Josephson-vortex flow resistance are observed. While the current steps are periodic in the voltage at constant fields, the voltage position of the steps, together with the flux-flow voltage, increases nonlinearly with magnetic field. The abab-flow resistance oscillates as a function of field with a constant period over a wide range of magnetic fields and temperatures. The current steps in the I(V)I(V) characteristics and the flow resistance oscillations can be linked to the motion of Josephson vortices across layers

    Initial Conditions for Semiclassical Field Theory

    Get PDF
    Semiclassical approximation based on extracting a c-number classical component from quantum field is widely used in the quantum field theory. Semiclassical states are considered then as Gaussian wave packets in the functional Schrodinger representation and as Gaussian vectors in the Fock representation. We consider the problem of divergences and renormalization in the semiclassical field theory in the Hamiltonian formulation. Although divergences in quantum field theory are usually associated with loop Feynman graphs, divergences in the Hamiltonian approach may arise even at the tree level. For example, formally calculated probability of pair creation in the leading order of the semiclassical expansion may be divergent. This observation was interpretted as an argumentation for considering non-unitary evolution transformations, as well as non-equivalent representations of canonical commutation relations at different time moments. However, we show that this difficulty can be overcomed without the assumption about non-unitary evolution. We consider first the Schrodinger equation for the regularized field theory with ultraviolet and infrared cutoffs. We study the problem of making a limit to the local theory. To consider such a limit, one should impose not only the requirement on the counterterms entering to the quantum Hamiltonian but also the requirement on the initial state in the theory with cutoffs. We find such a requirement in the leading order of the semiclassical expansion and show that it is invariant under time evolution. This requirement is also presented as a condition on the quadratic form entering to the Gaussian state.Comment: 20 pages, Plain TeX, one postscript figur

    PROBLEM OF HEART SALVATION DURING REPERFUSION. OPIOID RECEPTOR AGONISTS AS A POSSIBLE SOLUTION

    Get PDF
    Ischaemia/reperfusion cardiac injury contributes to morbidity and mortality during percutaneous coronary intervention, heart surgery and transplantation. Even when the recanalization of an infarct-related coronary artery is carried out successfully, there is still a risk of death due to reperfusion injury. Numerous pharmacological interventions have been found in experiments on animals. However, the translation of these interventions to clinical practice has been disappointing. None of the drug treatment has been able to improve in-hospital mortality of patients with acute myocardial infarction. The search for pharmacological agents able to salvage myocardium during reperfusion continues. Opioid receptor (OR) agonists represent one of the promising group of drugs for treatment of patients with myocardial infarction. It has been found that µ-, δ- and κ-OR agonists are able to attenuate heart injury when administered before or at the beginning of reperfusion. However, what kind of OR receptors need to be activated in order to protect the heart during reperfusion and the precise mechanism of this effect have yet to be elucidated.Ischaemia/reperfusion cardiac injury contributes to morbidity and mortality during percutaneous coronary intervention, heart surgery and transplantation. Even when the recanalization of an infarct-related coronary artery is carried out successfully, there is still a risk of death due to reperfusion injury. Numerous pharmacological interventions have been found in experiments on animals. However, the translation of these interventions to clinical practice has been disappointing. None of the drug treatment has been able to improve in-hospital mortality of patients with acute myocardial infarction. The search for pharmacological agents able to salvage myocardium during reperfusion continues. Opioid receptor (OR) agonists represent one of the promising group of drugs for treatment of patients with myocardial infarction. It has been found that µ-, δ- and κ-OR agonists are able to attenuate heart injury when administered before or at the beginning of reperfusion. However, what kind of OR receptors need to be activated in order to protect the heart during reperfusion and the precise mechanism of this effect have yet to be elucidated

    First-Matsubara-frequency rule in a Fermi liquid. Part II: Optical conductivity and comparison to experiment

    Full text link
    Motivated by recent optical measurements on a number of strongly correlated electron systems, we revisit the dependence of the conductivity of a Fermi liquid, \sigma(\Omega,T), on the frequency \Omega and temperature T. Using the Kubo formalism and taking full account of vertex corrections, we show that the Fermi liquid form Re\sigma^{-1}(\Omega,T)\propto \Omega^2+4\pi^2T^2 holds under very general conditions, namely in any dimensionality above one, for a Fermi surface of an arbitrary shape (but away from nesting and van Hove singularities), and to any order in the electron-electron interaction. We also show that the scaling form of Re\sigma^{-1}(\Omega,T) is determined by the analytic properties of the conductivity along the Matsubara axis. If a system contains not only itinerant electrons but also localized degrees of freedom which scatter electrons elastically, e.g., magnetic moments or resonant levels, the scaling form changes to Re\sigma^{-1}(\Omega,T)\propto \Omega^2+b\pi^2T^2, with 1\leq b<\infty. For purely elastic scattering, b =1. Our analysis implies that the value of b\approx 1, reported for URu_2Si_2 and some rare-earth based doped Mott insulators, indicates that the optical conductivity in these materials is controlled by an elastic scattering mechanism, whereas the values of b\approx 2.3 and b\approx 5.6, reported for underdoped cuprates and organics, correspondingly, imply that both elastic and inelastic mechanisms contribute to the optical conductivity.Comment: 18 pages, 10 figure

    Modeling the evolution of weighted networks

    Full text link
    We present a general model for the growth of weighted networks in which the structural growth is coupled with the edges' weight dynamical evolution. The model is based on a simple weight-driven dynamics and a weights' reinforcement mechanism coupled to the local network growth. That coupling can be generalized in order to include the effect of additional randomness and non-linearities which can be present in real-world networks. The model generates weighted graphs exhibiting the statistical properties observed in several real-world systems. In particular, the model yields a non-trivial time evolution of vertices properties and scale-free behavior with exponents depending on the microscopic parameters characterizing the coupling rules. Very interestingly, the generated graphs spontaneously achieve a complex hierarchical architecture characterized by clustering and connectivity correlations varying as a function of the vertices' degree

    Mathematical Conception of "Phenomenological" Equilibrium Thermodynamics

    Full text link
    In the paper, the principal aspects of the mathematical theory of equilibrium thermodynamics are distinguished. It is proved that the points of degeneration of a Bose gas of fractal dimension in the momentum space coincide with critical points or real gases, whereas the jumps of critical indices and the Maxwell rule are related to the tunnel generalization of thermodynamics. Semiclassical methods are considered for the tunnel generalization of thermodynamics and also for the second and ultrasecond quantization (operators of creation and annihilation of pairs). To every pure gas there corresponds a new critical point of the limit negative pressure below which the liquid passes to a dispersed state (a foam). Relations for critical points of a homogeneous mixture of pure gases are given in dependence on the concentration of gases.Comment: 37 pages, 9 figure, more precise explanations, more references. arXiv admin note: substantial text overlap with arXiv:1202.525

    Linear superposition in nonlinear wave dynamics

    Full text link
    We study nonlinear dispersive wave systems described by hyperbolic PDE's in R^{d} and difference equations on the lattice Z^{d}. The systems involve two small parameters: one is the ratio of the slow and the fast time scales, and another one is the ratio of the small and the large space scales. We show that a wide class of such systems, including nonlinear Schrodinger and Maxwell equations, Fermi-Pasta-Ulam model and many other not completely integrable systems, satisfy a superposition principle. The principle essentially states that if a nonlinear evolution of a wave starts initially as a sum of generic wavepackets (defined as almost monochromatic waves), then this wave with a high accuracy remains a sum of separate wavepacket waves undergoing independent nonlinear evolution. The time intervals for which the evolution is considered are long enough to observe fully developed nonlinear phenomena for involved wavepackets. In particular, our approach provides a simple justification for numerically observed effect of almost non-interaction of solitons passing through each other without any recourse to the complete integrability. Our analysis does not rely on any ansatz or common asymptotic expansions with respect to the two small parameters but it uses rather explicit and constructive representation for solutions as functions of the initial data in the form of functional analytic series.Comment: New introduction written, style changed, references added and typos correcte
    corecore