292 research outputs found
Lifeworld Inc. : and what to do about it
Can we detect changes in the way that the world turns up as they turn up? This paper makes such an attempt. The first part of the paper argues that a wide-ranging change is occurring in the ontological preconditions of Euro-American cultures, based in reworking what and how an event is produced. Driven by the security – entertainment complex, the aim is to mass produce phenomenological encounter: Lifeworld Inc as I call it. Swimming in a sea of data, such an aim requires the construction of just enough authenticity over and over again. In the second part of the paper, I go on to argue that this new world requires a different kind of social science, one that is experimental in its orientation—just as Lifeworld Inc is—but with a mission to provoke awareness in untoward ways in order to produce new means of association. Only thus, or so I argue, can social science add to the world we are now beginning to live in
Digital Fabrication and Its Meanings for Photography and Film
Bazin, Cavell and other prominent theorists have asserted that movies are essentially photographic, with more recent scholars such as Carroll and Gaut protesting. Today CGI stands as a further counter, in addition to past objections such as editing, animation and blue screen. Also central in debates is whether photography is transparent, that is, whether it allows us to see things in other times and places. I maintain photography is transparent, notwithstanding objections citing digital manipulation. However, taking a cue from Cavell—albeit one poorly outlined in his work—I argue this is not so much because of what photography physically is, but because of what “photography” has come to mean. I similarly argue digital technologies have not significantly altered what cinematic media “are” because they have not fundamentally modified what they mean; and that cinema retains a photographic legacy, even when it abandons photographic technologies to digitally manufacture virtual worlds
Influence of Diel Period on Electrofishing and Beach Seining Assessments of Littoral Fish Assemblages
Discovery and Development of Toll-Like Receptor 4 (TLR4) Antagonists: A New Paradigm for Treating Sepsis and Other Diseases
Abstract. Sepsis remains the most common cause of death in intensive care units in the USA, with a current estimate of at least 750,000 cases per year, and 215,000 deaths annually. Despite extensive research still we do not quite understand the cellular and molecular mechanisms that are involved in triggering and propagation of septic injury. Endotoxin (lipopolysaccharide from Gram-negative bacteria, or LPS) has been implicated as a major cause of this syndrome. Inflammatory shock as a consequence of LPS release remains a serious clinical concern. In humans, inflammatory responses to LPS result in the release of cytokines and other cell mediators from monocytes and macrophages, which can cause fever, shock, organ failure and death. A number of different approaches have been investigated to try to treat and/or prevent the septic shock associated with infections caused by Gram-negative bacteria, including blockage of one or more of the cytokines induced by LPS. Recently several novel amphipathic compounds have been developed as direct LPS antagonists at the LPS receptor, TLR4. This review article will outline the current knowledge on the TLR4-LPS synthesis and discuss the signaling, in vitro pre-clinical and in vivo clinical evaluation of TLR4 antagonists and their potential use in sepsis and a variety of diseases such as atherosclerosis as well as hepatic and renal malfunction. KEY WORDS: drug discovery; LPS; sepsis; toll-like receptor antagonists
Amelioration of Acute Kidney Injury in Lipopolysaccharide-Induced Systemic Inflammatory Response Syndrome by an Aldose Reductase Inhibitor, Fidarestat
Systemic inflammatory response syndrome is a fatal disease because of multiple organ failure. Acute kidney injury is a serious complication of systemic inflammatory response syndrome and its genesis is still unclear posing a difficulty for an effective treatment. Aldose reductase (AR) inhibitor is recently found to suppress lipopolysaccharide (LPS)-induced cardiac failure and its lethality. We studied the effects of AR inhibitor on LPS-induced acute kidney injury and its mechanism.Mice were injected with LPS and the effects of AR inhibitor (Fidarestat 32 mg/kg) before or after LPS injection were examined for the mortality, severity of renal failure and kidney pathology. Serum concentrations of cytokines (interleukin-1β, interleukin-6, monocyte chemotactic protein-1 and tumor necrosis factor-α) and their mRNA expressions in the lung, liver, spleen and kidney were measured. We also evaluated polyol metabolites in the kidney.Mortality rate within 72 hours was significantly less in LPS-injected mice treated with AR inhibitor both before (29%) and after LPS injection (40%) than untreated mice (90%). LPS-injected mice showed marked increases in blood urea nitrogen, creatinine and cytokines, and AR inhibitor treatment suppressed the changes. LPS-induced acute kidney injury was associated with vacuolar degeneration and apoptosis of renal tubular cells as well as infiltration of neutrophils and macrophages. With improvement of such pathological findings, AR inhibitor treatment suppressed the elevation of cytokine mRNA levels in multiple organs and renal sorbitol accumulation.AR inhibitor treatment ameliorated LPS-induced acute kidney injury, resulting in the lowered mortality
Non-allergic rhinitis: a case report and review
Rhinitis is characterized by rhinorrhea, sneezing, nasal congestion, nasal itch and/or postnasal drip. Often the first step in arriving at a diagnosis is to exclude or diagnose sensitivity to inhalant allergens. Non-allergic rhinitis (NAR) comprises multiple distinct conditions that may even co-exist with allergic rhinitis (AR). They may differ in their presentation and treatment. As well, the pathogenesis of NAR is not clearly elucidated and likely varied. There are many conditions that can have similar presentations to NAR or AR, including nasal polyps, anatomical/mechanical factors, autoimmune diseases, metabolic conditions, genetic conditions and immunodeficiency. Here we present a case of a rare condition initially diagnosed and treated as typical allergic rhinitis vs. vasomotor rhinitis, but found to be something much more serious. This case illustrates the importance of maintaining an appropriate differential diagnosis for a complaint routinely seen as mundane. The case presentation is followed by a review of the potential causes and pathogenesis of NAR
Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension
<p>Abstract</p> <p>Background</p> <p>The prevalence of diabetes is increasing worldwide. It has been long known that increased rates of inflammatory diseases, such as obesity (OBS), hypertension (HT) and cardiovascular diseases (CVD) are highly associated with type 2 diabetes (T2D). T2D and/or OBS can develop independently, due to genetic, behavioral or lifestyle-related variables but both lead to oxidative stress generation. The underlying mechanisms by which theses complications arise and manifest together remain poorly understood. Protein-protein interactions regulate nearly every living process. Availability of high-throughput genomic data has enabled unprecedented views of gene and protein co-expression, co-regulations and interactions in cellular systems.</p> <p>Methods</p> <p>The present work, applied a systems biology approach to develop gene interaction network models, comprised of high throughput genomic and PPI data for T2D. The genes differentially regulated through T2D were 'mined' and their 'wirings' were studied to get a more complete understanding of the overall gene network topology and their role in disease progression.</p> <p>Results</p> <p>By analyzing the genes related to T2D, HT and OBS, a highly regulated gene-disease integrated network model has been developed that provides useful functional linkages among groups of genes and thus addressing how different inflammatory diseases are connected and propagated at genetic level. Based on the investigations around the 'hubs' that provided more meaningful insights about the cross-talk within gene-disease networks in terms of disease phenotype association with oxidative stress and inflammation, a hypothetical co-regulation disease mechanism model been proposed. The results from this study revealed that the oxidative stress mediated regulation cascade is the common mechanistic link among the pathogenesis of T2D, HT and other inflammatory diseases such as OBS.</p> <p>Conclusion</p> <p>The findings provide a novel comprehensive approach for understanding the pathogenesis of various co-associated chronic inflammatory diseases by combining the power of pathway analysis with gene regulatory network evaluation.</p
Primary biliary cirrhosis
Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9–10:1) with a prevalence of up to 1 in 1,000 women over 40 years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13–15 mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC
- …
