55 research outputs found

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR

    Thermal Bleaching of V

    No full text

    Besprechungen

    No full text

    Contrasting the grain boundary-affected performance of zinc and indium oxide transparent conductors

    No full text
    Zinc oxide-based transparent conductors have long been advanced for their potential as low-cost, earth-abundant replacements for the indium oxide-based materials that currently dominate in practical applications. However, this potential has yet to be realized because of the difficulties in producing zinc oxide thin films with the necessary high levels of electrical conductivity and environmental stability that are readily achieved using indium oxide. To better understand the fundamental reasons for this, polycrystalline zinc and indium oxide thin films were prepared across a range of deposition temperatures using the technique of spray pyrolysis. Electrical transport measurements of these samples both as a function of temperature and UV irradiation were correlated with film morphology to illustrate that the different grain boundary behaviour of these two materials is one of the key reasons for their divergent performance. This is a critical challenge that must be addressed before any substantial increase in the adoption of ZnO-based transparent conductors can take place
    • …
    corecore