87 research outputs found
Multidrug-resistant Strains of Salmonella enterica Typhimurium, United States, 1997–19981
To evaluate multidrug-resistant strains of Salmonella
enterica Typhimurium, including definitive type 104 (DT104) in the United States, we reviewed data from the National Antimicrobial Resistance Monitoring System (NARMS). In 1997–1998, 25% (703) of 2,767 serotyped Salmonella isolates received at NARMS were S. Typhimurium; antimicrobial susceptibility testing and phage typing were completed for 697. Fifty-eight percent (402) were resistant to >1 antimicrobial agent. Three multidrug-resistant (>5 drugs) strains accounted for 74% (296) of all resistant isolates. Ceftriaxone resistance was present in 3% (8), and nalidixic acid resistance in 1% (4), of these multidrug-resistant strains. By phage typing, 37% (259) of S. Typhimurium isolates were DT104, 30% (209) were of undefined type and 15% (103) were untypable. Fifty percent (202) of resistant (>1 drug) isolates were DT104. Multidrug-resistant S. Typhimurium isolates, particularly DT104, account for a substantial proportion of S. Typhimurium isolates; ceftriaxone resistance is exhibited by some of these strains
Phage typing or CRISPR typing for epidemiological surveillance of Salmonella Typhimurium?
Objective:
Salmonella Typhimurium is the most dominant Salmonella serovar around the world. It is associated with foodborne gastroenteritis outbreaks but has recently been associated with invasive illness and deaths. Characterization of S. Typhimurium is therefore very crucial for epidemiological surveillance. Phage typing has been used for decades for subtyping of S. Typhimurium to determine the epidemiological relation among isolates. Recent studies however have suggested that high throughput clustered regular interspaced short palindromic repeats (CRISPR) typing has the potential to replace phage typing. This study aimed to determine the efficacy of highthroughput CRISPR typing over conventional phage typing in epidemiological surveillance and outbreak investigation of S. Typhimurium.
Results:
In silico analysis of whole genome sequences (WGS) of well-documented phage types of S. Typhimurium reveals the presence of different CRISPR type among strains
belong to the same phage type. Furthermore, different phage types of S. Typhimurium share identical CRISPR type. Interestingly, identical spacers were detected among outbreak and non-outbreak associated DT8 strains of S. Typhimurium. Therefore, CRISPR typing is not useful for the epidemiological surveillance and outbreak investigation of S. Typhimurium and phage typing, until it is replaced by WGS, is still the gold standard method for epidemiological surveillance of S. Typhimurium
A Screening Pipeline for Antiparasitic Agents Targeting Cryptosporidium Inosine Monophosphate Dehydrogenase
Persistent diarrhea is a leading cause of illness and death among impoverished children, and a growing share of this disease burden can be attributed to the parasite Cryptosporidium. There are no vaccines to prevent Cryptosporidium infection, and the treatment options are limited and unreliable. Critically, no effective treatment exists for children or adults suffering from AIDS. Cryptosporidium presents many technical obstacles for drug discovery; perhaps the most important roadblock is the difficulty of monitoring drug action. Here we have developed a set of methods to accelerate the drug discovery process for cryptosporidiosis. We exploit the opportunities for experimental manipulation in the related parasite Toxoplasma to genetically engineer a Cryptosporidium model. This new model parasite mirrors the metabolism of Cryptosporidium for a particularly promising drug target that supplies the building blocks for DNA and RNA. Drug effectiveness can be assayed through simple fluorescence measurements for many candidates. Using this assay as an initial filter, and adapting other assays to a high throughput format, we identify several novel chemical compounds that exhibit markedly improved anti-cryptosporidial activity and excellent selectivity
Neonatal erythropoiesis and subsequent anemia in HIV-positive and HIV-negative Zimbabwean babies during the first year of life: a longitudinal study
BACKGROUND: Anemia is common in HIV infection and independently associated with disease progression and mortality. The pathophysiology of HIV-related anemia is not well understood especially in infancy. METHODS: We conducted a longitudinal cohort study nested within the Zimbabwe Vitamin A for Mothers and Babies Project. We measured hemoglobin, erythropoietin (EPO), serum transferrin receptor (TfR) and serum ferritin at 6 weeks, 3 and 6 months of age and hemoglobin at 9 and 12 months in 3 groups of randomly selected infants: 136 born to HIV-negative mothers, and 99 born to HIV-positive mothers and who were infected themselves by 6 weeks of age, and 324 born to HIV-positive mothers but who did not become infected in the 6 months following birth. RESULTS: At one year of age, HIV-positive infants were 5.26 (adjusted odds ratio, P < 0.001) times more likely to be anemic compared to HIV-negative infants. Among, HIV-negative infants, EPO was or tended to be inversely associated with hemoglobin and was significantly positively associated with TfR throughout the first 6 months of life; TfR was significantly inversely associated with ferritin at 6 months; and EPO explained more of the variability in TfR than did ferritin. Among infected infants, the inverse association of EPO to hemoglobin was attenuated during early infancy, but significant at 6 months. Similar to HIV-negative infants, EPO was significantly positively associated with TfR throughout the first 6 months of life. However, the inverse association between TfR and ferritin observed among HIV-negative infants at 6 months was not observed among infected infants. Between birth and 6 months, mean serum ferritin concentration declined sharply (by ~90%) in all three groups of babies, but was significantly higher among HIV-positive compared to HIV-negative babies at all time points. CONCLUSION: HIV strongly increases anemia risk and confounds interpretation of hematologic indicators in infants. Among HIV-infected infants, the EPO response to anemia is attenuated near the time of infection in the first weeks of life, but normalizes by 6 months
Global Mortality Estimates for the 2009 Influenza Pandemic from the GLaMOR Project: A Modeling Study
Background: Assessing the mortality impact of the 2009 influenza A H1N1 virus (H1N1pdm09) is essential for optimizing public health responses to future pandemics. The World Health Organization reported 18,631 laboratory-confirmed pandemic deaths, but the total pandemic mortality burden was substantially higher. We estimated the 2009 pandemic mortality burden through statistical modeling of mortality data from multiple countries. Methods and Findings: We obtained weekly virology and underlying cause-of-death mortality time series for 2005–2009 for 20 countries covering ~35% of the world population. We applied a multivariate linear regression model to estimate pandemic respiratory mortality in each collaborating country. We then used these results plus ten country indicators in a multiple imputation model to project the mortality burden in all world countries. Between 123,000 and 203,000 pandemic respiratory deaths were estimated globally for the last 9 mo of 2009. The majority (62%–85%) were attributed to persons under 65 y of age. We observed a striking regional heterogeneity, with almost 20-fold higher mortality in some countries in the Americas than in Europe. The model attributed 148,000–249,000 respiratory deaths to influenza in an average pre-pandemic season, with only 19% in person
Cryptosporidium sp. in children suffering from acute diarrhea at Uberlândia City, State of Minas Gerais, Brazil
This study's objective was to search for Cryptosporidium sp. in diarrheic feces from children aged zero to 12 years and cared for at medical units within Universidade Federal de Uberlândia or at a private practice in Uberlândia, State of Minas Gerais, Brazil, from September 1992 to August 1993. Three fecal samples preserved in 10% formalin, were collected from 94 children. Oocyst concentration was performed through Ritchie's (modified) method and staining of fecal smears for each sample (total of 1128 slides) was done by the "Safranin/Methylene Blue" and the "Kinyoun (modified)" techniques. The Hoffmann, Pons & Janer method was also employed to look for other enteroparasites. From 94 children, 4.26% excreted fecal Cryptosporidium oocysts. The infection seemed to vary according to age: 5.08% of patients aged zero to two years old; 33.33% of those aging eight to ten years (P>0.05). Cryptosporidium appeared in November, December and March, during the rainy season. 20.21% of the children harbored at least one enteroparasite different from Cryptosporidium, mainly Giardia intestinalis (12.77%). From Cryptosporidium infected patients, two had only this kind, another harbored Giardia intestinalis; the last one hosted Strongyloides stercoralis
Cryptosporidiosis drug discovery: Opportunities and Challenges
Apicomplexan parasite Cryptosporidium is the second most important diarrheal pathogen causing a life-threatening diarrhea in children and is also associated with long-term growth faltering and cognitive deficiency. Currently, nitazoxanide is the only approved treatment for cryptosporidum infections. Unfortunately it has limited efficacy in most vulnerable patients, thus there is an urgent need for a safe and efficacious cryptosporidiosis drug. The main objective of our cryptosporidiosis program is to identify new chemotypes active against both Cryptosporidium parvum and C. hominis. In this article, we share our current thinking on the ‘target product profile’ for cryptosporidiosis and our perspective on perceived risks and possible mitigation plans at different stages of cryptosporidiosis drug discovery. Through a global collaborative effort and increased investments in drug discovery and development, a safe and efficacious cryptosporidiosis drug is possible
- …