3,289 research outputs found
A Nonpolymorphic Class I Gene in the Murine Major Histocompatibility Complex
DNA sequence analysis of a class I gene (QlO), which maps to the Qa2,3 locus in the C57BL/lO (H-
2b haplotype) mouse, reveals that it is almost identical
to a cDNA clone (pH16) isolated from a SWR/J
(H-2q haplotype) mouse liver cDNA library. Exon 5,
in particular, has an unusual structure such that a
polypeptide product is unlikely to be anchored in the
cell membrane. Our findings suggest that the two
sequences are derived from allelic class I genes,
which are nonpolymorphic, in contrast to H-2K allelic
sequences from the same mice, and they may encode
liver-specific polypeptides of unknown function.
Our previous studies indicate that the QlO gene
is a potential donor gene for the generation of mutations
at the H-2K locus by inter-gene transfer of
genetic information. Thus the lack of polymorphism
in class I genes at the QlO locus implies either that
they are not recipients for such exchanges or that
selective pressure prevents the accumulation of mutations
in genes at this locus
Recent Patents Pertaining to Immune Modulation and Musculoskeletal Regeneration with Wharton's Jelly Cells
This is the author's accepted manuscript. Made available by the permission of the publisher.Umbilical cord mesenchymal stromal cells (UCMSCs) are isolated from Wharton's jelly in the umbilical cord at birth, and offer advantages over adult mesenchymal stromal cells (MSCs) such as highly efficient isolation, faster proliferation in vitro, a broader differentiation potential, and non-invasive harvesting procedure. Their expansion and differentiation potential renders them a promising cell source for tissue engineering and clinical applications. This review discusses recent updates on the differentiation strategies for musculoskeletal tissue engineering including cartilage, bone, and muscle. In addition to tissue engineering applications, UCMSCs can be utilized to support hematopoiesis and modulate immune response. We review the patents relevant to the application of MSCs including UCMSCs in hematopoiesis and immune modulation. Finally, the current hurdles in the clinical translation of UCMSCs are discussed. During clinical translation, it is critical to develop large-scale manufacturing of UCMSCs as well as the composition of expansion and differentiation media. Four clinical trials to date have examined the safety and efficacy of UCMSCs. Once public banking of UCMSCs is available to supply matched allogeneic units and once UCMSC manufacturing is standardized, we anticipate that UCMSCs will be more widely used in clinical trials
Subdiffusion and weak ergodicity breaking in the presence of a reactive boundary
We derive the boundary condition for a subdiffusive particle interacting with
a reactive boundary with finite reaction rate. Molecular crowding conditions,
that are found to cause subdiffusion of larger molecules in biological cells,
are shown to effect long-tailed distributions with identical exponent for both
the unbinding times from the boundary to the bulk and the rebinding times from
the bulk. This causes a weak ergodicity breaking: typically, an individual
particle either stays bound or remains in the bulk for very long times. We
discuss why this may be beneficial for in vivo gene regulation by DNA-binding
proteins, whose typical concentrations are nanomolarComment: 4 pages, 1 figure, REVTeX4, accepted to Phys Rev Lett, some typos
correcte
Global and local relaxation of a spin-chain under exact Schroedinger and master-equation dynamics
We solve the Schroedinger equation for an interacting spin-chain locally
coupled to a quantum environment with a specific degeneracy structure. The
reduced dynamics of the whole spin-chain as well as of single spins is
analyzed. We show, that the total spin-chain relaxes to a thermal equilibrium
state independently of the internal interaction strength. In contrast, the
asymptotic states of each individual spin are thermal for weak but non-thermal
for stronger spin-spin coupling. The transition between both scenarios is found
for couplings of the order of , with denoting
the Zeeman-splitting. We compare these results with a master equation
treatment; when time averaged, both approaches lead to the same asymptotic
state and finally with analytical results.Comment: RevTeX, 8 pages, 14 figures, added DOI and forgotten reference
A Comparison of Human Bone Marrow Derived Mesenchymal Stem Cells and Human Umbilical Cord-Derived Mesenchymal Stromal Cells for Cartilage Tissue Engineering
Abstract Bone marrow derived mesenchymal stem cells (BMSCs) have long been considered the criterion standard for stem cell sources in musculoskeletal tissue engineering. The true test of a stem cell source is a side-by-side comparison with BMSCs. Human umbilical cord derived mesenchymal stromal cells (hUCMSCs), one such candidate with high potential, are a fetus-derived stem cell source collected from discarded tissue (Wharton's jelly) after birth. Compared with human BMSCs (hBMSCs), hUCMSCs have the advantages of abundant supply, painless collection, no donor site morbidity, and faster and longer self-renewal in vitro. In this 6-week study, a chondrogenic comparison was conducted of hBMSCs and hUCMSCs in a three-dimensional (3D) scaffold for the first time. Cells were seeded on polyglycolic acid (PGA) scaffolds at 25M cells/mL and then cultured in identical conditions. Cell proliferation, biosynthesis, and chondrogenic differentiation were assessed at weeks 0, 3, and 6 after seeding. At weeks 3 and 6, hUCMSCs produced more glycosaminoglycans than hBMSCs. At week 6, the hUCMSC group had three times as much collagen as the hBMSC group. Immunohistochemistry revealed the presence of collagen types I and II and aggrecan in both groups, but type II collagen staining was more intense for hBMSCs than hUCMSCs. At week 6, the quantitative reverse transcriptase polymerase chain reaction (RT-PCR) revealed less type I collagen messenger RNA (mRNA) with both cell types, and more type II collagen mRNA with hBMSCs, than at week 3. Therefore, it was concluded that hUCMSCs may be a desirable option for use as a mesenchymal cell source for fibrocartilage tissue engineering, based on abundant type I collagen and aggrecan production of hUCMSCs in a 3D matrix, although further investigation of signals that best promote type II collagen production of hUCMSCs is warranted for hyaline cartilage engineering.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78138/1/ten.tea.2008.0393.pd
Decoherence in a N-qubit solid-state quantum computer
We investigate the decoherence process for a quantum register composed of N
qubits coupled to an environment. We consider an environment composed of one
common phonon bath and several electronic baths. This environment is relevant
to the implementation of a charge based solid-state quantum computer. We
explicitly compute the time evolution of all off-diagonal terms of the
register's reduced density matrix. We find that in realistic configurations,
"superdecoherence" and "decoherence free subspaces" do not exist for an N-qubit
system. This means that all off-diagonal terms decay like exp(-q(t)N), where
q(t) is of the same order as the decay function of a single qubit.Comment: 11 page
The Relative and Unique Contributions of Emotion Dysregulation and Impulsivity to Posttraumatic Stress Disorder Among Substance Dependent Inpatients
Background: Despite elevated rates of posttraumatic stress disorder (PTSD) among substance use disorder (SUD) patients, as well as the clinical relevance of this co-occurrence, few studies have examined psychological factors associated with a PTSD–SUD diagnosis. Two factors worth investigating are emotion dysregulation and impulsivity, both of which are associated with PTSD and SUDs. Therefore, this study examined associations between PTSD and facets of emotion dysregulation and impulsivity within a sample of trauma-exposed SUD inpatients.
Methods: Participants were an ethnically diverse sample of 205 SUD patients in residential substance abuse treatment. Patients were administered diagnostic interviews and completed a series of questionnaires.
Results: Patients with PTSD (n = 58) reported significantly higher levels of negative urgency (i.e., the tendency to engage in impulsive behaviors when experiencing negative affect) and lower sensation seeking, as well as higher levels of emotion dysregulation and the specific dimensions of lack of emotional acceptance, difficulties engaging in goal-directed behavior when upset, difficulties controlling impulsive behaviors when distressed, limited access to effective emotion regulation strategies, and lack of emotional clarity. Further, overall emotion dysregulation emerged as a significant predictor of PTSD status, accounting for unique variance in PTSD status above and beyond facets of impulsivity (as well as other relevant covariates).
Conclusions: Results suggest that emotion dysregulation may contribute to the development, maintenance, and/or exacerbation of PTSD and highlight the potential clinical utility of targeting emotion dysregulation among SUD patients with PTSD
Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells
Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering
Complete High Temperature Expansions for One-Loop Finite Temperature Effects
We develop exact, simple closed form expressions for partition functions
associated with relativistic bosons and fermions in odd spatial dimensions.
These expressions, valid at high temperature, include the effects of a
non-trivial Polyakov loop and generalize well-known high temperature
expansions. The key technical point is the proof of a set of Bessel function
identities which resum low temperature expansions into high temperature
expansions. The complete expressions for these partition functions can be used
to obtain one-loop finite temperature contributions to effective potentials,
and thus free energies and pressures.Comment: 9 pages, RevTeX, no figures. To be published in Phys. Rev D. v2 has
revised introduction and conclusions, plus a few typographical errors are
corrected; v3 corrects one typ
- …