18,324 research outputs found

    The von Karman equations for plates with residual strain

    Full text link
    We provide a derivation of the Foppl-von Karman equations for the shape of and stresses in an elastic plate with residual strains. These might arise from a range of causes: inhomogeneous growth, plastic deformation, swelling or shrinkage driven by solvent absorption. Our analysis gives rigorous bounds on the convergence of the three dimensional equations of elasticity to the low-dimensional description embodied in the plate-like description of laminae and thus justifies a recent formulation of the problem to the shape of growing leaves. It also formalizes a procedure that can be used to derive other low-dimensional descriptions of active materials.Comment: 26 page

    Affordable housing : manufactured homes / 1299

    Get PDF

    Non-local fractional derivatives. Discrete and continuous

    Get PDF
    We prove maximum and comparison principles for fractional discrete derivatives in the integers. Regularity results when the space is a mesh of length hh, and approximation theorems to the continuous fractional derivatives are shown. When the functions are good enough, these approximation procedures give a measure of the order of approximation. These results also allows us to prove the coincidence, for good enough functions, of the Marchaud and Gr\"unwald-Letnikov derivatives in every point and the speed of convergence to the Gr\"unwald-Letnikov derivative. The fractional discrete derivative will be also described as a Neumann-Dirichlet operator defined by a semi-discrete extension problem. Some operators related to the Harmonic Analysis associated to the discrete derivative will be also considered, in particular their behavior in the Lebesgue spaces $\ell^p(\mathbb{Z}).
    • …
    corecore