786 research outputs found
Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?
Single- and multilayer graphene and highly ordered pyrolytic graphite (HOPG) were exposed to a pure hydrogen low-temperature plasma (LTP). Characterizations include various experimental techniques such as photoelectron spectroscopy, Raman spectroscopy and scanning probe microscopy. Our photoemission measurement shows that hydrogen LTP exposed HOPG has a diamond-like valence-band structure, which suggests double-sided hydrogenation. With the scanning tunneling microscopy technique, various atomic-scale charge-density patterns were observed, which may be associated with different C-H conformers. Hydrogen-LTP-exposed graphene on SiO₂ has a Raman spectrum in which the D peak to G peak ratio is over 4, associated with hydrogenation on both sides. A very low defect density was observed in the scanning probe microscopy measurements, which enables a reverse transformation to graphene. Hydrogen-LTP-exposed HOPG possesses a high thermal stability, and therefore, this transformation requires annealing at over 1000 °C
The Role of Tungsten Chemical State and Boron on Ammonia Formation Using Nâ‚‚-Hâ‚‚ Radiofrequency Discharges
This work aims at investigating the role of tungsten and boron surfaces on ammonia production with N2textendash H2 radiofrequency plasmas at 3 Pa. The experiments combine the analysis of the reaction products and surface chemical environment using mass spectrometry and x-ray photoelectron spectroscopy (XPS). We show that NH3 is formed upon discharges of N2 or H2 after having exposed a tungsten (W) foil to H2 or N2, respectively. A higher amount of ammonia is formed for the N2-then-H2 case, which we explain by the larger number of Eleytextendash Rideal reaction channels for the formation of NH x (s) and the lower surface diffusion barrier for adsorbed hydrogen, calculated using the density functional theory (DFT). As a result, H(s) combines with N(s) or NH x (s) through Langmuirtextendash Hinshelwood at a faster rate than N(s) combines with another N(s). The amount of NH3 formed with N2textendash H2 discharges after conditioning the tungsten foil with H2, N2 or O2 was also investigated. We observed that this pre-conditioning plays no major role on the amount of NH3 detected with the residual gas analyser, albeit a small decrease was observed after H2 contamination. With DFT, the adsorption energies of H on WO3 and W are found to be similar, while the adsorption of N on WO3 is significantly weaker. The similar NH3 concentrations obtained with a clean and oxidized tungsten surface thus suggest that the adsorption of N does not limit the formation rate of ammonia. The production of NH3 on boron was evaluated as well. The boron surface reduced the amount of detected ammonia almost by half. On the one side, a significant amount of H2 was removed from the surface during the Ar cleaning that followed, which suggests a strong retention of hydrogen. On the other side, the XPS data reveals that nitrogen forms strong bonds with boron and impurities on the surface, regardless on whether hydrogen is previously present on the surface or in the plasma volume. The presence of hydrogen in the plasma volume, simultaneously with nitrogen or after nitrogen exposure, is nevertheless necessary for the formation of NH(s) and NH2(s). No NH3(s) was however detected with XPS. The increased retention of both hydrogen and nitrogen on the boron surface may thus hinder the formation of NH3
Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy
Few layer graphene and graphite are simultaneously grown on a similar to 100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(pi) hybridization. (C) 2016 AIP Publishing LLC
In situ cleaning of diagnostic first mirrors: An experimental comparison between plasma and laser cleaning in ITER-relevant conditions
This paper presents an experimental comparison between the plasma cleaning and the laser cleaning techniques of diagnostic first mirrors (FMs). The re-deposition of contaminants sputtered from a tokamak first wall onto FMs could dramatically decrease their reflectance in an unacceptable way for the proper functioning of plasma diagnostic systems. Therefore, suitable in situ cleaning solutions will be required to recover the FMs reflectance in ITER. Currently, plasma cleaning and laser cleaning are considered the most promising solutions. In this work, a set of ITER-like rhodium mirrors contaminated with materials tailored to reproduce tokamak redeposits is employed to experimentally compare plasma and laser cleaning against different criteria (reflectance recovery, mirror integrity, time requirement). We show that the two techniques present different complementary features that can be exploited for the cleaning of ITER FMs. In particular, plasma cleaning ensures an excellent reflectance recovery in the case of compact contaminants, while laser cleaning is faster, gentler, and more effective in the case of porous contaminant. In addition, we demonstrate the potential benefits of a synergistic solution which combines plasma and laser cleaning to exploit the best features of each technique
M. ulcerans infection diagnosis by fine needle aspiration
Date du colloque : 04/2009</p
Erosion yields of carbon under various plasma conditions in Pilot-PSI
Fine-grain graphite targets have been exposed to ITER divertor relevant
plasmas in Pilot-PSI to address material migration issues in fusion devices.
Optical emission spectroscopy and mass loss measurements have been employed to
quantify gross chemical erosion and net erosion yields, respectively. Effects
of the ion impact energy and target geometry on carbon erosion yields have been
studied. It is concluded that temporal evolution of gross chemical erosion is
strongly connected with changes in morphology of plasma exposed surfaces. The
net carbon erosion yield is increased when the targets are partly covered by
insulating boron-nitride rings.Comment: 14 pages, 4 figures, Contribution to the 19th International
Conference on Plasma Surface Interaction
Learning to run a power network with trust
Artificial agents are promising for realtime power system operations,
particularly, to compute remedial actions for congestion management. Currently,
these agents are limited to only autonomously run by themselves. However,
autonomous agents will not be deployed any time soon. Operators will still be
in charge of taking action in the future. Aiming at designing an assistant for
operators, we here consider humans in the loop and propose an original
formulation for this problem. We first advance an agent with the ability to
send to the operator alarms ahead of time when the proposed actions are of low
confidence. We further model the operator's available attention as a budget
that decreases when alarms are sent. We present the design and results of our
competition "Learning to run a power network with trust" in which we benchmark
the ability of submitted agents to send relevant alarms while operating the
network to their best
Phenomenological interpretation of internal erosion in granular soils from a discrete fluid-solid numerical model
Internal erosion in granular soils may involve different steps: the detachment of solid particles from the granular skeleton under the action of water seepage; the transport of the detached particles carried with the water flow in the pore space; and eventually, for some erosion processes, such as suffusion, the possible reattachment of some transported particles to the solid skeleton of the soil, acting as a filter. The first part of this paper is devoted to the description and interpretation of the first step about the particle detachment. The analysis is mainly based on direct numerical simulations performed with a fully coupled discrete element-lattice Boltzmann method. Dynamics of the solid granular phase is represented thanks to the discrete element method in which each solid particle is explicitly described, whereas dynamics of the interstitial water flow is solved with the lattice Boltzmann method. Interactions between the solid phase and the fluid phase are handled at the particle scale avoiding the introduction in the model of some phenomenological constituents to deal with fluid-solid interactions. Numerical modellings of hole erosion can be interpreted similarly to laboratory hole erosion tests where the erosion rate is linearly related to the hydraulic shear stress. Further investigations from the numerical results suggest that the erosion rate for hole erosion in granular soil, can also be interpreted as a function of the water flow power according to a power law. The latter interpretation is applied to experimental data from suffusion tests on a cohesionless soil and glass bead mixtures. Here again, if change of erosion rate due to filtration is discarded, erosion rate is correctly described by the water seepage power according to a power law. Finally, a simple phenomenological model is suggested to describe the whole suffusion process, based on the previous results, to describe the particle detachment, and completed to take also into account the transport and filtration phases. Predictions of this model are compared with experimental results from suffusion tests on glass bead mixtures
A possible characterization of suffusion susceptibility independent of the hydraulic loading history?
Suffusion is a complex phenomenon which involves selective erosion of fine particles under the effect of seepage flow in the matrix of coarser particles. With the objective to characterize suffusion susceptibility, a series of downward seepage flow tests was realized with a triaxial erodimeter developed in our laboratory. Three different cohesionless soils were tested under controlled hydraulic gradient or under controlled flow rate. This study shows the significant effect of hydraulic loading history on the value of critical hydraulic gradient. Moreover, method characterizing the erosion susceptibility based on rate of erosion doesn’t lead to a unique characterization of suffusion process for different histories of hydraulic loading. The new analysis is based on energy expended by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. The results demonstrate that this approach is effective to characterize suffusion susceptibility for cohesionless soils
- …