1,777 research outputs found
Update Measurement of the b Baryon Lifetime
The lifetime of the b baryons has been measured by the ALEPH detector using two independent data samples. From a maximum likelihood fit to the impact parameter distribution of leptons in combinations, the b baryon lifetime is measured. The lifetime of the baryon is measured from a maximum likelihood fit to the proper time distribution of candidates
Updated Measurement of the b baryon lifetime
sing about 4 million hadronic Z decays recorded with the Aleph detector, the lifetime of the b baryons has been measured using two independent data samples. From a maximum likelihood fit to the impact parameter distribution of leptons in 1085 Lambda-lepton combinations containing a b baryon sample of 719 decays the measured b baryon lifetime is \tau = 1.18 \pm 0.08(stat) \pm 0.07 (syst) ps The lifetime of the Lambda_b baryon from a maximum likelihood fit to the proper time distribution of 193 Lambda_c-lepton candidates is \tau_{\Lambda_b} = 1.21^{+0.13}_{-0.12}{stat}) \pm 0.04 {syst} ps. The combined result of the two measurements yields an averaged value \tau_{\Lambda_b} = 1.19 \pm{0.0
The LCG PI project: using interfaces for physics data analysis
In the context of the LHC computing grid (LCG) project, the applications area develops and maintains that part of the physics applications software and associated infrastructure that is shared among the LHC experiments. The "physicist interface" (PI) project of the LCG application area encompasses the interfaces and tools by which physicists will directly use the software, providing implementations based on agreed standards like the analysis systems subsystem (AIDA) interfaces for data analysis. In collaboration with users from the experiments, work has started with implementing the AIDA interfaces for (binned and unbinned) histogramming, fitting and minimization as well as manipulation of tuples. These implementations have been developed by re-using existing packages either directly or by using a (thin) layer of wrappers. In addition, bindings of these interfaces to the Python interpreted language have been done using the dictionary subsystem of the LCG applications area/SEAL project. The actual status and the future planning of the project will be presented
Engineering a costume for performance using illuminated LED-yarns
A goal in the field of wearable technology is to blend electronics with textile fibers to create garments that drape and conform as normal, with additional functionality provided by the embedded electronics. This can be achieved with electronic yarns (E-yarns), in which electronics are integrated within the fibers of a yarn. A challenge is incorporating non-stretch E-yarns with stretch fabric that is desirable for some applications. To address this challenge, E-yarns containing LEDs were embroidered onto the stretch fabric of a unitard used as part of a carnival costume. A zig-zag pattern of attachment of E-yarns was developed. Tensile testing showed this pattern was successful in preventing breakages within the E-yarns. Use in performance demonstrated that a dancer was unimpeded by the presence of the E-yarns within the unitard, but also a weakness in the junctions between E-yarns was observed, requiring further design work and reinforcement. The level of visibility of the chosen red LEDs within black E-yarns was low. The project demonstrated the feasibility of using E-yarns with stretch fabrics. This will be particularly useful in applications where E-yarns containing sensors are required in close contact with skin to provide meaningful on-body readings, without impeding the wearer
Choice of autogenous conduit for lower extremity vein graft revisions
AbstractBackground: Surgical revision to repair stenosis is necessary in about 20% of lower extremity vein grafts (LEVGs). Alternate conduit, especially arm vein, is often necessary to achieve a policy of all-autogenous revisions. Although basilic vein harvest necessitates deep exposure in proximity to major nerves, it typically uses a large vein unaffected by prior intravenous lines and as such appears ideally suited for revisions in which a segmental interposition conduit is needed for revision within the graft or for extension to a more proximal inflow or distal outflow site. In this report, we describe our experience with the use of the basilic vein for LEVG revisions compared with other sources of autogenous conduit. Methods: All patients who underwent LEVG were placed in a duplex scan surveillance program. LEVGs that developed a focal area of increased velocity or uniformly low velocities throughout the graft with appropriate lesions confirmed with angiography were candidates for revision. All patients who underwent graft revision with basilic vein segments from January 1, 1990, to September 1, 2001, were identified, and their courses were reviewed for subsequent adverse events (further revision or occlusion) and complications of harvest. These revisions were compared with revisions in which cephalic and saphenous vein were used. Results: One hundred thirty basilic veins were used to revise 122 LEVGs. The mean follow-up period after revision was 28 ± 27 months. Ninety-three grafts (71%) remained patent with no further revision, and 37 grafts (29%) either needed additional revisions (22 grafts) or were occluded (15 grafts). Only four of these adverse events (11%) were directly attributed to the basilic vein segment. Ten of 43 grafts revised with cephalic vein (23%) were either revised or occluded, of which three were related to the cephalic vein segment (P = not significant, compared with basilic vein). Twenty-four of 81 grafts revised with saphenous vein (30%) were either revised or occluded, of which 11 were attributed to the saphenous vein segment (P < .01, compared with basilic vein). Two patients (1.5%) had complications from basilic vein harvest (one hematoma, one arterial injury). No neurologic injuries resulted from basilic vein harvest. Conclusion: The basilic vein is a reliable and durable conduit when used to segmentally revise LEVGs. Stenoses rarely occur within interposed basilic vein segments, and excellent freedom from subsequent revision or occlusion is possible. We conclude the basilic vein can be safely harvested with minimal complications and is ideally suited for use as a short segment interposition graft for LEVG revision. (J Vasc Surg 2002;36:238-44.
Pippi - painless parsing, post-processing and plotting of posterior and likelihood samples
Interpreting samples from likelihood or posterior probability density
functions is rarely as straightforward as it seems it should be. Producing
publication-quality graphics of these distributions is often similarly painful.
In this short note I describe pippi, a simple, publicly-available package for
parsing and post-processing such samples, as well as generating high-quality
PDF graphics of the results. Pippi is easily and extensively configurable and
customisable, both in its options for parsing and post-processing samples, and
in the visual aspects of the figures it produces. I illustrate some of these
using an existing supersymmetric global fit, performed in the context of a
gamma-ray search for dark matter. Pippi can be downloaded and followed at
http://github.com/patscott/pippi .Comment: 4 pages, 1 figure. v3: Updated for pippi 2.0. New features include
hdf5 support, out-of-core processing, inline post-processing with arbitrary
Python code in the input file, and observable-specific data cuts. Pippi can
be downloaded from http://github.com/patscott/pipp
RooStatsCms: a tool for analyses modelling, combination and statistical studies
The RooStatsCms (RSC) software framework allows analysis modelling and
combination, statistical studies together with the access to sophisticated
graphics routines for results visualisation. The goal of the project is to
complement the existing analyses by means of their combination and accurate
statistical studies.Comment: Proceedings of the 11th Topical Seminar on Innovative Particle and
Radiation Detectors. 4 pages and 5 figure
Performance and scalability of the back-end sub-system in the ATLAS DAQ/EF prototype
The DAQ group of the future ATLAS experiment has developed a prototype system based on the trigger/DAQ architecture described in the ATLAS Technical Proposal to support studies of the full system functionality, architecture as well as available hardware and software technologies. One sub-system of this prototype is the back- end which encompasses the software needed to configure, control and monitor the DAQ, but excludes the processing and transportation of physics data. The back-end consists of a number of components including run control, configuration databases and message reporting system. The software has been developed using standard, external software technologies such as OO databases and CORBA. It has been ported to several C++ compilers and operating systems including Solaris, Linux, WNT and LynxOS. This paper gives an overview of the back-end software, its performance, scalability and current status. (17 refs)
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
