1,734 research outputs found
Aging of the Nonlinear Optical Susceptibility of colloidal solutions
Using Z-scan and dynamic light scattering measurements we investigate the
nonlinear optics response of a colloidal solution undergoing dynamics slowing
down with age. We study the high optical nonlinearity of an organic dye
(Rhodamine B) dispersed in a water-clay (Laponite) solution, at different clay
concentrations (2.0 wt% - 2.6 wt%), experiencing the gelation process. We
determine the clay platelets self diffusion coefficient and, by its comparison
with the structural relaxation time, we conclude that the gelation process
proceeds through the structuring of interconnecting clay platelets network
rather than through clusters growth and aggregation.Comment: 4 figures, 4 page
The Case against Mercury as the Angrite Parent Body (APB)
Angrites are not plausibly from Mercury based on their high FeO contents and ancient ages (e.g., [1]). Rather, the early crystallization ages of angrites argues for a small asteroidal-sized parent body for these meteorites (e.g., [2]). Despite this, recently it has been proposed that Mercury is the APB [3, 4, 5, 6]. Preserved corona and symplectite textures and the presence of 120 triple junctions in NWA 2999 have been cited as requiring a planetary origin [3, 4], with the symplectites in NWA 2999 resulting from rapid decompression during uplift via thrust faults on Mercury [4], and the coronas during subsequent cooling at low pressure. Glasses along grain boundaries and exsolution lamellae possibly indicative of rapid melting and cooling in NWA 4950 are cited as evidence of rapid decompression [6]. To explain the discrepancy between spectral observations of the Mercurian surface and the high FeO contents in angrites, an early (~4.5 Ga), collisionally-stripped FeO-rich basaltic surface has been suggested for Mercury [5, 6]
Power dependence of pure spin current injection by quantum interference
We investigate the power dependence of pure spin current injection in GaAs
bulk and quantum-well samples by a quantum interference and control technique.
Spin separation is measured as a function of the relative strength of the two
transition pathways driven by two laser pulses. By keeping the relaxation time
of the current unchanged, we are able to relate the spin separation to the
injected average velocity. We find that the average velocity is determined by
the relative strength of the two transitions in the same way as in classical
interference. Based on this, we conclude that the density of injected pure spin
current increases monotonically with the excitation laser intensities. The
experimental results are consistent with theoretical calculations based on
Fermi's golden rule.Comment: 6 pages, 4 figure
Competing interactions in arrested states of colloidal clays
Using experiments, theory and simulations, we show that the arrested state
observed in a colloidal clay at intermediate concentrations is stabilized by
the screened Coulomb repulsion (Wigner glass). Dilution experiments allow us to
distinguish this high-concentration disconnected state, which melts upon
addition of water, from a low-concentration gel state, which does not melt.
Theoretical modelling and simulations reproduce the measured Small Angle X-Ray
Scattering static structure factors and confirm the long-range electrostatic
nature of the arrested structure. These findings are attributed to the
different timescales controlling the competing attractive and repulsive
interactions.Comment: Accepted for publication in Physical Review Letter
Arrested state of clay-water suspensions: gel or glass?
The aging of a charged colloidal system has been studied by Small Angle
X-rays Scattering, in the exchanged momentum range Q=0.03 - 5 nm-1, and by
Dynamic Light Scattering, at different clay concentrations (Cw =0.6 % - 2.8 %).
The static structure factor, S(Q), has been determined as a function of both
aging time and concentration. This is the first direct experimental evidence of
the existence and evolution with aging time of two different arrested states in
a single system simply obtained only by changing its volume fraction: an
inhomogeneous state is reached at low concentrations, while a homogenous one is
found at high concentrations.Comment: 5 pages, 2 figure
Irreversible Aging Dynamics and Generic Phase Behavior of Aqueous Suspensions of Laponite
In this work we study the aging behavior of aqueous suspension of Laponite
having 2.8 weight % concentration using rheological tools. At various salt
concentration all the samples demonstrate orientational order when observed
using crossed polarizers. In rheological experiments we observe inherent
irreversibility in the aging dynamics which forces the system not to rejuvenate
to the same state in the shear melting experiment carried out at a later date
since preparation. The extensive rheological experiments carried out as a
function of time elapsed since preparation demonstrate the self similar trend
in the aging behavior irrespective of the concentration of salt. We observe
that the exploration of the low energy states as a function of aging time is
only kinetically affected by the presence of salt. We estimate that the energy
barrier to attain the low energy states decreases linearly with increase in the
concentration of salt. The observed superposition of all the elapsed time and
the salt concentration dependent data suggests that the aging that occurs in
low salt concentration systems over a very long period is qualitatively similar
to the aging behavior observed in systems with high salt concentration over a
shorter period.Comment: 27 pages, 8 figures. Langmuir, in pres
Recommended from our members
Petrology and oxygen isotopic composition of large igneous inclusions in ordinary chondrites: Early solar system igneous processes and oxygen reservoirs
Large (>3.5 mm and up to 4 cm across) igneous inclusions poor in metal and sulfide are a minor but not uncommon component in ordinary chondrites, and have implications for the nature of physiochemical and melting processes in the early solar system. We obtained petrographic-chemical data for forty-two large igneous inclusions in ordinary chondrites of various groups (H, L, LL) and petrographic types (3-6) and oxygen isotope data for a subset of twelve of these inclusions and their host chondrites. Different inclusions formed both before and after the thermal metamorphism experienced by their host chondrites. The bulk chemical compositions of the inclusions vary broadly around whole-rock chondrite composition, comprise four main chemical types and some other variants, and show little evidence of having formed as igneous differentiates. Oxygen isotope compositions overlap ordinary chondrite compositions and are related to inclusion chemical type. Most prevalent in type 3 and 4 chondrites are inclusions, often droplets, of the vapor-fractionated (Vfr) chemical type, either enriched in refractory lithophile elements, or depleted in volatile lithophile elements, or both. These inclusions have low Δ17O (∼0.1-0.6‰) and high δ18O (∼4-8‰) values and formed in reservoirs with Δ17O lower than their hosts, primarily as evaporative melts and mixtures that probably experienced kinetic isotopic fractionation. Another chemical type (Unfr+K) has unfractionated abundances of lithophile elements except for being strongly enriched in K, a signature also found in some impact melts from melt rocks and melt breccias. These inclusions formed by impact melting of chondritic material and accompanying K enrichment. Inclusions with unfractionated (Unfr) lithophile element abundances are present in type 3-6 chondrites and are prevalent in type 5 and 6. Some are spatially associated with coarse metal-sulfide nodules in the chondrites and likely formed by in situ impact melting. Others were melted prior to thermal metamorphism and were chemically but not isotopically homogenized during metamorphism; they are xenoliths that formed in oxygen reservoirs different than the hosts in which they were metamorphosed. The latter inclusions provide evidence for nebular or collisional mixing of primitive materials prior to thermal metamorphism of asteroid bodies, including transport of H-like source materials to the L body, LL-like source materials to the L body, and low-Δ17O materials to the LL body. Feldspar-rich (FldR) inclusions have compositions similar to melt pockets and could have formed by disequilibrium melting and concentration of feldspar during an impact event to form large droplets or large masses. Overall, the results of this study point to important and varied roles for both “planetary” impact melting and “nebular” evaporative melting processes to form different large igneous inclusions in ordinary chondrites. Chondrules may have formed by processes similar to those inferred for large inclusions, but there are important differences in the populations of these objects
Electron density stratification in two-dimensional structures tuned by electric field
A new kinetic instability which results in formation of charge density waves
is proposed. The instability is of a purely classical nature. A spatial period
of arising space-charge and field configuration is inversely proportional to
electric field and can be tuned by applied voltage. The instability has no
interpretation in the framework of traditional hydrodynamic approach, since it
arises from modulation of an electron distribution function both in coordinate
and energy spaces. The phenomenon can be observed in thin 2D nanostructures at
relatively low electron density.Comment: 4 pages, 2 figure
- …