464 research outputs found
On the use of low-cost computer peripherals for the assessment of motor dysfunction in Parkinson’s disease – Quantification of bradykinesia using target tracking tasks
The potential of computer games peripherals to measure the motor dysfunction in Parkinson’s diseases is assessed. Of particular interest is the quantification of bradykinesia. Previous studies used modified or custom haptic interfaces, here an unmodified force feedback joystick and steering wheel are used with a laptop. During testing an on screen cursor moves in response to movements of the peripheral, the user has to track a continuously moving target (pursuit tracking), or move to a predetermined target (step tracking). All tasks use movement in the horizontal axis, allowing use of joystick or steering wheel. Two pursuit tracking tasks are evaluated, pseudo random movement, and a swept frequency task. Two step tracking tasks are evaluated, movement between two or between two of five fixed targets. Thirteen patients and five controls took part on a weekly basis. Patients were assessed for bradykinesia at each session using standard clinical measures. A range of quantitative measures was developed to allow comparison between and within patients and controls using ANOVA. Both peripherals are capable of discriminating between controls and patients, and between patients with different levels of bradykinesia. Recommendations for test procedures and peripherals are given
Self-Induced Quasistationary Magnetic Fields
The interaction of electromagnetic radiation with temporally dispersive
magnetic solids of small dimensions may show very special resonant behaviors.
The internal fields of such samples are characterized by
magnetostatic-potential scalar wave functions. The oscillating modes have the
energy orthogonality properties and unusual pseudo-electric (gauge) fields.
Because of a phase factor, that makes the states single valued, a persistent
magnetic current exists. This leads to appearance of an eigen-electric moment
of a small disk sample. One of the intriguing features of the mode fields is
dynamical symmetry breaking
Bostonia: The Boston University Alumni Magazine. Volume 11
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Bostonia: The Boston University Alumni Magazine. Volume 12
Founded in 1900, Bostonia magazine is Boston University’s main alumni publication
Beverage consumption among European adolescents in the HELENA study
Our objective was to describe the fluid and energy consumption of beverages in a large sample of European adolescent
Recommended from our members
Spherical Resorcinol-Formaldehyde Resin for the Removal of Cesium from Hanford Tank Waste
The lifetime of nitrogen oxides in an isoprene-dominated forest
The lifetime of nitrogen oxides (NO_x) affects the concentration and distribution of NO_x and the spatial patterns of nitrogen deposition. Despite its importance, the lifetime of NO_x is poorly constrained in rural and remote continental regions. We use measurements from a site in central Alabama during the Southern Oxidant and Aerosol Study (SOAS) in summer 2013 to provide new insights into the chemistry of NO_x and NO_x reservoirs. We find that the lifetime of NO_x during the daytime is controlled primarily by the production and loss of alkyl and multifunctional nitrates (ΣANs). During SOAS, ΣAN production was rapid, averaging 90 ppt h^(−1) during the day, and occurred predominantly during isoprene oxidation. Analysis of the ΣAN and HNO_3 budgets indicate that ΣANs have an average lifetime of under 2 h, and that approximately 45 % of the ΣANs produced at this site are rapidly hydrolyzed to produce nitric acid. We find that ΣAN hydrolysis is the largest source of HNO_3 and the primary pathway to permanent removal of NO_x from the boundary layer in this location. Using these new constraints on the fate of ΣANs, we find that the NO_x lifetime is 11 ± 5 h under typical midday conditions. The lifetime is extended by storage of NO_x in temporary reservoirs, including acyl peroxy nitrates and ΣANs
The Defensive Role of Volatile Emission and Extrafloral Nectar Secretion for Lima Bean in Nature
Lima bean (Phaseolus lunatus) features two indirect anti-herbivore defenses—emission of volatile organic compounds (VOCs) and secretion of extrafloral nectar (EFN)—which are both inducible upon herbivore damage. In a previous field study, Lima bean benefited from the simultaneous induction of the two defenses, yet it remained unclear whether both had contributed to plant protection. Our experimental approach aimed at studying the defensive role of both indirect defenses simultaneously. Tendrils were sprayed with jasmonic acid (JA) to induce both defenses, and performance was compared to that of others that were treated with a synthetic blend of either EFN or VOCs. Confirming earlier results, JA treatment and application of the VOC mixture induced EFN secretion in treated tendrils in quantitatively similar amounts. The composition of the applied synthetic blend of EFN was adjusted to match the concentration of EFN secreted from JA- and VOC-treated tendrils. Repeated application of either enhanced the performance of several fitness-relevant plant parameters such as growth rate and flower production. Tendrils treated with JA showed a similar trend, yet some fitness-related parameters responded less to this treatment. This suggests a minor importance of any putative JA-dependent direct defense traits or higher costs of JA-elicited responses as compared to VOCS and EFN, as otherwise JA-treated tendrils should have outperformed VOC- and EFN-treated tendrils. Moreover, the beneficial effect of applying synthetic EFN alone equaled or exceeded that of VOCs and JA. Ants were by far the dominant group among the arthropods that was attracted to JA-, VOC-, or EFN-treated tendrils. The results suggest that EFN plays a more important role as an indirect defense of lima bean than VOCs or any other JA-responsive trait
Fertilization with beneficial microorganisms decreases tomato defenses against insect pests
International audienceThe adverse effects of chemical fertilizers on agricultural fields and the environment are compelling society to move toward more sustainable farming techniques. “Effective microorganisms” is a beneficial microbial mixture that has been developed to improve soil quality and crop yield while simultaneously dramatically reducing organic chemical application. Additional indirect benefits of beneficial microorganisms application may include increased plant resistance to herbivore attack, though this has never been tested till now. Tomato plants were grown in controlled greenhouse conditions in a full-factorial design with beneficial microorganisms inoculation and commercial chemical fertilizer application as main factors. We measured plant yield and growth parameters, as well as resistance against the generalist pest Spodoptera littoralis moth larval attack. Additionally, we measured plant defensive chemistry to underpin resistance mechanisms. Overall, we found that, comparable to chemical fertilizer, beneficial microorganisms increased plant growth fruit production by 35 and 61 %, respectively. Contrary to expectations, plants inoculated with beneficial microorganisms sustained 25 % higher insect survival and larvae were in average 41 % heavier than on unfertilized plants. We explain these results by showing that beneficial microorganism-inoculated plants were impaired in the induction of the toxic glycoalkaloid molecule tomatine and the defense-related phytohormone jasmonic acid after herbivore attack. For the first time, we therefore show that biofertilizer application might endure unintended, pest-mediated negative effects, and we thus suggest that biofertilizer companies should incorporate protection attributes in their studies prior to commercialization
Organic nitrate aerosol formation via NO_3 + biogenic volatile organic compounds in the southeastern United States
Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO_3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO_3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO_3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23–44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C_(10)H_(17)NO_5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C_5H_9NO_5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO_3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO_3 + BVOCs
- …