262 research outputs found
Investigation of whisker growth from alkaline non-cyanide zinc electrodeposits
Electroplated zinc finishes have been widely used in the packaging of electronic products for many years as a result of their excellent corrosion resistance and relatively low cost. However, the spontaneous formation of whiskers on zinc electroplated components, which are capable of resulting in electrical shorting or other damaging effects, can be highly problematic for the reliability of long-life electrical and electronic equipment. This work investigated the mechanism for whisker growth from zinc electrodeposited mild steel substrates. The incubation time for whisker growth from the surface of nodules on the surface of the electrodeposit was considerably reduced compared with that from the planar deposit surface. Recrystallisation of the as-deposited columnar structure was observed at the whisker root. This result is consistent with some recent whisker growth models based on recrystallisation. There was no evidence of iron-zinc (Fe-Zn) intermetallic formation at the iron/zinc (Fe/Zn) interface or within the zinc coating beneath the whiskers
Unified Multifractal Description of Velocity Increments Statistics in Turbulence: Intermittency and Skewness
The phenomenology of velocity statistics in turbulent flows, up to now,
relates to different models dealing with either signed or unsigned longitudinal
velocity increments, with either inertial or dissipative fluctuations. In this
paper, we are concerned with the complete probability density function (PDF) of
signed longitudinal increments at all scales. First, we focus on the symmetric
part of the PDFs, taking into account the observed departure from scale
invariance induced by dissipation effects. The analysis is then extended to the
asymmetric part of the PDFs, with the specific goal to predict the skewness of
the velocity derivatives. It opens the route to the complete description of all
measurable quantities, for any Reynolds number, and various experimental
conditions. This description is based on a single universal parameter function
D(h) and a universal constant R*.Comment: 13 pages, 3 figures, Extended version, Publishe
Opportunities for use of exact statistical equations
Exact structure function equations are an efficient means of obtaining
asymptotic laws such as inertial range laws, as well as all measurable effects
of inhomogeneity and anisotropy that cause deviations from such laws. "Exact"
means that the equations are obtained from the Navier-Stokes equation or other
hydrodynamic equations without any approximation. A pragmatic definition of
local homogeneity lies within the exact equations because terms that explicitly
depend on the rate of change of measurement location appear within the exact
equations; an analogous statement is true for local stationarity. An exact
definition of averaging operations is required for the exact equations. Careful
derivations of several inertial range laws have appeared in the literature
recently in the form of theorems. These theorems give the relationships of the
energy dissipation rate to the structure function of acceleration increment
multiplied by velocity increment and to both the trace of and the components of
the third-order velocity structure functions. These laws are efficiently
derived from the exact velocity structure function equations. In some respects,
the results obtained herein differ from the previous theorems. The
acceleration-velocity structure function is useful for obtaining the energy
dissipation rate in particle tracking experiments provided that the effects of
inhomogeneity are estimated by means of displacing the measurement location.Comment: accepted by Journal of Turbulenc
Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing
Utilizing an eigenfunction decomposition, we study the growth and spectra of
energy in the vortical and wave modes of a 3D rotating stratified fluid as a
function of . Working in regimes characterized by moderate
Burger numbers, i.e. or , our results
indicate profound change in the character of vortical and wave mode
interactions with respect to . As with the reference state of
, for the wave mode energy saturates quite quickly
and the ensuing forward cascade continues to act as an efficient means of
dissipating ageostrophic energy. Further, these saturated spectra steepen as
decreases: we see a shift from to scaling for
(where and are the forcing and dissipation scales,
respectively). On the other hand, when the wave mode energy
never saturates and comes to dominate the total energy in the system. In fact,
in a sense the wave modes behave in an asymmetric manner about .
With regard to the vortical modes, for , the signatures of 3D
quasigeostrophy are clearly evident. Specifically, we see a scaling
for and, in accord with an inverse transfer of energy, the
vortical mode energy never saturates but rather increases for all . In
contrast, for and increasing, the vortical modes contain a
progressively smaller fraction of the total energy indicating that the 3D
quasigeostrophic subsystem plays an energetically smaller role in the overall
dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract
Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields
Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presente
Recent Developments in Understanding Two-dimensional Turbulence and the Nastrom-Gage Spectrum
Two-dimensional turbulence appears to be a more formidable problem than
three-dimensional turbulence despite the numerical advantage of working with
one less dimension. In the present paper we review recent numerical
investigations of the phenomenology of two-dimensional turbulence as well as
recent theoretical breakthroughs by various leading researchers. We also review
efforts to reconcile the observed energy spectrum of the atmosphere (the
spectrum) with the predictions of two-dimensional turbulence and
quasi-geostrophic turbulence.Comment: Invited review; accepted by J. Low Temp. Phys.; Proceedings for
Warwick Turbulence Symposium Workshop on Universal features in turbulence:
from quantum to cosmological scales, 200
Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project
Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discusse
Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part II: conclusions and recommendations
The paper presents the main conclusions and recommendations derived from the EVIDOS project, which is supported by the European Commission within the 5th Framework Programme. EVIDOS aims at evaluating state of the art neutron dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This analysis complements a series of individual papers which present detailed results and it summarises the main findings from a practical point of view. Conclusions and recommendations are given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosemeter result
Zinc whisker growth from electroplated finishes – a review
Electroplated zinc finishes have been associated with the electronics industry for many years as a result of their excellent corrosion resistance and relatively low cost. They are normally applied onto ferrous products to provide corrosion protection in a range of different environments. However, the formation of spontaneously grown whiskers on zinc-electroplated components, which are capable of resulting in electrical shorting or other damaging effects, can be highly problematic for the reliability of long life electrical and electronic equipment. The growth of zinc whiskers has been identified as the cause of some electrical and electronic failures in telecommunications and aerospace-based applications, with consequences ranging from mild inconvenience to complete system failures. Investigators have been striving to address the problems induced by whisker growth since 1940s. However, most research effort has been focused on tin whiskers, especially following European Union environmental legislation that restricted the use of lead (Pb), which when alloyed with tin (3–10% by weight) provided effective tin whisker mitigation. Compared with tin whisker research, much less attention has been paid to zinc whiskers. A number of mechanisms to explain zinc whisker growth have been proposed, but none of them are widely accepted and some are in conflict with each other. The aim of this paper is to review the available literature in regard to zinc whiskers, to discuss the reported growth mechanisms, to evaluate the effect of deposition parameters and to explore potential mitigation methods. This paper presents a chronologically ordered review of zinc whisker-related studies from 1946 to 2013. Some important early research, which investigated whisker growth in tin and cadmium, as well as zinc, has also been included
Achievements in workplace neutron dosimetry in the last decade: lessons learned from the EVIDOS project
The availability of active neutron personal dosemeters has made real time monitoring of neutron doses possible. This has obvious benefits, but is only of any real assistance if the dose assessments made are of sufficient accuracy and reliability. Preliminary assessments of the performance of active neutron dosemeters can be made in calibration facilities, but these can never replicate the conditions under which the dosemeter is used in the workplace. Consequently, it is necessary to assess their performance in the workplace, which requires the field in the workplace to be fully characterised in terms of the energy and direction dependence of the fluence. This paper presents an overview of developments in workplace neutron dosimetry but concentrates on the outcomes of the EVIDOS project, which has made significant advances in the characterisation of workplace fields and the analysis of dosemeter responses in those field
- …