4,160 research outputs found

    A new coherent states approach to semiclassics which gives Scott's correction

    Full text link
    We introduce new coherent states and use them to prove semi-classical estimates for Schr\"odinger operators with regular potentials. This can be further applied to the Thomas-Fermi potential yielding a new proof of the Scott correction for molecules.Comment: A misprint in the definition of new coherent states correcte

    Proof of Bose-Einstein Condensation for Dilute Trapped Gases

    Full text link
    The ground state of bosonic atoms in a trap has been shown experimentally to display Bose-Einstein condensation (BEC). We prove this fact theoretically for bosons with two-body repulsive interaction potentials in the dilute limit, starting from the basic Schroedinger equation; the condensation is 100% into the state that minimizes the Gross-Pitaevskii energy functional. This is the first rigorous proof of BEC in a physically realistic, continuum model.Comment: Revised version with some simplifications and clarifications. To appear in Phys. Rev. Let

    A Rigorous Derivation of the Gross-Pitaevskii Energy Functional for a Two-Dimensional Bose Gas

    Full text link
    We consider the ground state properties of an inhomogeneous two-dimensional Bose gas with a repulsive, short range pair interaction and an external confining potential. In the limit when the particle number NN is large but ρˉa2\bar\rho a^2 is small, where ρˉ\bar\rho is the average particle density and aa the scattering length, the ground state energy and density are rigorously shown to be given to leading order by a Gross-Pitaevskii (GP) energy functional with a coupling constant g1/ln(ρˉa2)g\sim 1/|\ln(\bar\rho a^2)|. In contrast to the 3D case the coupling constant depends on NN through the mean density. The GP energy per particle depends only on NgNg. In 2D this parameter is typically so large that the gradient term in the GP energy functional is negligible and the simpler description by a Thomas-Fermi type functional is adequate.Comment: 14 pages, no figures, latex 2e. References, some clarifications and an appendix added. To appear in Commun. Math. Phy

    On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states

    Full text link
    The time evolution of the adiabatic piston problem and the consequences of its stochastic motion are investigated. The model is a one dimensional piston of mass MM separating two ideal fluids made of point particles with mass mMm\ll M. For infinite systems it is shown that the piston evolves very rapidly toward a stationary nonequilibrium state with non zero average velocity even if the pressures are equal but the temperatures different on both sides of the piston. For finite system it is shown that the evolution takes place in two stages: first the system evolves rather rapidly and adiabatically toward a metastable state where the pressures are equal but the temperatures different; then the evolution proceeds extremely slowly toward the equilibrium state where both the pressures and the temperatures are equal. Numerical simulations of the model are presented. The results of the microscopical approach, the thermodynamical equations and the simulations are shown to be qualitatively in good agreement.Comment: 28 pages, 10 figures include

    The Ground State Energy of Dilute Bose Gas in Potentials with Positive Scattering Length

    Full text link
    The leading term of the ground state energy/particle of a dilute gas of bosons with mass mm in the thermodynamic limit is 2π2aρ/m2\pi \hbar^2 a \rho/m when the density of the gas is ρ\rho, the interaction potential is non-negative and the scattering length aa is positive. In this paper, we generalize the upper bound part of this result to any interaction potential with positive scattering length, i.e, a>0a>0 and the lower bound part to some interaction potentials with shallow and/or narrow negative parts.Comment: Latex 28 page

    Ground State Asymptotics of a Dilute, Rotating Gas

    Full text link
    We investigate the ground state properties of a gas of interacting particles confined in an external potential in three dimensions and subject to rotation around an axis of symmetry. We consider the so-called Gross-Pitaevskii (GP) limit of a dilute gas. Analyzing both the absolute and the bosonic ground state of the system we show, in particular, their different behavior for a certain range of parameters. This parameter range is determined by the question whether the rotational symmetry in the minimizer of the GP functional is broken or not. For the absolute ground state, we prove that in the GP limit a modified GP functional depending on density matrices correctly describes the energy and reduced density matrices, independent of symmetry breaking. For the bosonic ground state this holds true if and only if the symmetry is unbroken.Comment: LaTeX2e, 37 page

    Sharp constants in several inequalities on the Heisenberg group

    Get PDF
    We derive the sharp constants for the inequalities on the Heisenberg group H^n whose analogues on Euclidean space R^n are the well known Hardy-Littlewood-Sobolev inequalities. Only one special case had been known previously, due to Jerison-Lee more than twenty years ago. From these inequalities we obtain the sharp constants for their duals, which are the Sobolev inequalities for the Laplacian and conformally invariant fractional Laplacians. By considering limiting cases of these inequalities sharp constants for the analogues of the Onofri and log-Sobolev inequalities on H^n are obtained. The methodology is completely different from that used to obtain the R^n inequalities and can be (and has been) used to give a new, rearrangement free, proof of the HLS inequalities.Comment: 30 pages; addition of Corollary 2.3 and some minor changes; to appear in Annals of Mathematic

    Norms of quantum Gaussian multi-mode channels

    Get PDF
    We compute the SpSp\mathcal S^p \to \mathcal S^p norm of a general Gaussian gauge-covariant multi-mode channel for any 1p<1\leq p<\infty, where Sp\mathcal S^p is a Schatten space. As a consequence, we verify the Gaussian optimizer conjecture and the multiplicativity conjecture in these cases.Comment: 9 pages; minor changes; to appear in J. Math. Phy

    A compactness lemma and its application to the existence of minimizers for the liquid drop model

    Get PDF
    The ancient Gamow liquid drop model of nuclear energies has had a renewed life as an interesting problem in the calculus of variations: Find a set ΩR3\Omega \subset \mathbb R^3 with given volume A that minimizes the sum of its surface area and its Coulomb self energy. A ball minimizes the former and maximizes the latter, but the conjecture is that a ball is always a minimizer -- when there is a minimizer. Even the existence of minimizers for this interesting geometric problem has not been shown in general. We prove the existence of the absolute minimizer (over all AA) of the energy divided by AA (the binding energy per particle). A second result of our work is a general method for showing the existence of optimal sets in geometric minimization problems, which we call the `method of the missing mass'. A third point is the extension of the pulling back compactness lemma from W1,pW^{1,p} to BVBV.Comment: 16 page

    Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality

    Get PDF
    We give a new proof of certain cases of the sharp HLS inequality. Instead of symmetric decreasing rearrangement it uses the reflection positivity of inversions in spheres. In doing this we extend a characterization of the minimizing functions due to Li and Zhu.Comment: 15 pages; references added and minor change
    corecore