8,805 research outputs found

    Heterogeneities in amorphous systems under shear

    Get PDF
    The last decade has seen major progresses in studies of elementary mechanisms of deformation in amorphous materials. Here, we start with a review of physically-based theories of plasticity, going back to the identification of "shear-transformations" as early as the 70's. We show how constructive criticism of the theoretical models permits to formulate questions concerning the role of structural disorder, mechanical noise, and long-ranged elastic interactions. These questions provide the necessary context to understand what has motivated recent numerical studies. We then summarize their results, show why they had to focus on athermal systems, and point out the outstanding questions.Comment: Chapter of "Dynamical Heterogeneities in glasses, colloids and granular materials", Eds.: L. Berthier, G. Biroli, J-P Bouchaud, L. Cipelletti and W. van Saarloos (Oxford University Press, to appear), more info at http://w3.lcvn.univ-montp2.fr/~lucacip/DH_book.ht

    Hole-LO phonon interaction in InAs/GaAs quantum dots

    Get PDF
    We investigate the valence intraband transitions in p-doped self-assembled InAs quantum dots using far-infrared magneto-optical technique with polarized radiation. We show that a purely electronic model is unable to account for the experimental data. We calculate the coupling between the mixed hole LO-phonon states using the Fr\"ohlich Hamiltonian, from which we determine the polaron states as well as the energies and oscillator strengths of the valence intraband transitions. The good agreement between the experiments and calculations provides strong evidence for the existence of hole-polarons and demonstrates that the intraband magneto-optical transitions occur between polaron states

    Accurate measurement of a 96% input coupling into a cavity using polarization tomography

    Full text link
    Pillar microcavities are excellent light-matter interfaces providing an electromagnetic confinement in small mode volumes with high quality factors. They also allow the efficient injection and extraction of photons, into and from the cavity, with potentially near-unity input and output-coupling efficiencies. Optimizing the input and output coupling is essential, in particular, in the development of solid-state quantum networks where artificial atoms are manipulated with single incoming photons. Here we propose a technique to accurately measure input and output coupling efficiencies using polarization tomography of the light reflected by the cavity. We use the residual birefringence of pillar microcavities to distinguish the light coupled to the cavity from the uncoupled light: the former participates to rotating the polarization of the reflected beam, while the latter decreases the polarization purity. Applying this technique to a micropillar cavity, we measure a 53±2%53 \pm2 \% output coupling and a 96±1%96 \pm 1\% input coupling with unprecedented precision.Comment: 6 pages, 3 figure

    Driven activation versus thermal activation

    Full text link
    Activated dynamics in a glassy system undergoing steady shear deformation is studied by numerical simulations. Our results show that the external driving force has a strong influence on the barrier crossing rate, even though the reaction coordinate is only weakly coupled to the nonequilibrium system. This "driven activation" can be quantified by introducing in the Arrhenius expression an effective temperature, which is close to the one determined from the fluctuation-dissipation relation. This conclusion is supported by analytical results for a simplified model system.Comment: 5 pages, 3 figure

    Statistical mechanics of damage phenomena

    Full text link
    This paper applies the formalism of classical, Gibbs-Boltzmann statistical mechanics to the phenomenon of non-thermal damage. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. Stochastic topological behavior in the system is described in terms of an effective temperature parameter thermalizing the system. An equation of state and a topological analog of the energy-balance equation are obtained. The formalism of the free energy potential is developed, and the nature of the first order phase transition and spinodal is demonstrated.Comment: Critical point appeared to be a spinodal poin

    Definition of the stimulated emission threshold in high-β\beta nanoscale lasers through phase-space reconstruction

    Full text link
    Nanoscale lasers sustain few optical modes so that the fraction of spontaneous emission β\beta funnelled into the useful (lasing) mode is high (of the order of few 10−1^{-1}) and the threshold, which traditionally corresponds to an abrupt kink in the light in- light out curve, becomes ill-defined. We propose an alternative definition of the threshold, based on the dynamical response of the laser, which is valid even for β=1\beta=1 lasers. The laser dynamics is analyzed through a reconstruction of its phase-space trajectory for pulsed excitation. Crossing the threshold brings about a change in the shape of the trajectory and in the area contained in it. An unambiguous definition of the threshold in terms of this change is shown theoretically and illustrated experimentally in a photonic crystal laser

    Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold

    Full text link
    The excitation spectrum around the pump-only stationary state of a polariton optical parametric oscillator (OPO) in semiconductor microcavities is investigated by time-resolved photoluminescence. The response to a weak pulsed perturbation in the vicinity of the idler mode is directly related to the lifetime of the elementary excitations. A dramatic increase of the lifetime is observed for a pump intensity approaching and exceeding the OPO threshold. The observations can be explained in terms of a critical slowing down of the dynamics upon approaching the threshold and the following onset of the soft Goldstone mode
    • …
    corecore