15 research outputs found

    Soft vortex matter in a type-I/type-II superconducting bilayer

    Full text link
    Magnetic flux patterns are known to strongly differ in the intermediate state of type-I and type-II superconductors. Using a type-I/type-II bilayer we demonstrate hybridization of these flux phases into a plethora of unique new ones. Owing to a complicated multi-body interaction between individual fluxoids, many different intriguing patterns are possible under applied magnetic field, such as few-vortex clusters, vortex chains, mazes or labyrinthal structures resembling the phenomena readily encountered in soft matter physics. However, in our system the patterns are tunable by sample parameters, magnetic field, current and temperature, which reveals transitions from short-range clustering to long-range ordered phases such as parallel chains, gels, glasses and crystalline vortex lattices, or phases where lamellar type-I flux domains in one layer serve as a bedding potential for type-II vortices in the other - configurations clearly beyond the soft-matter analogy

    Conditions for non-monotonic vortex interaction in two-band superconductors

    Full text link
    We describe a semi-analytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain - superconductor interface energy, in analogy with the conventional differentiation between type-I and type-II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ\kappa^*, different from the standard κ\kappa of a bulk superconductor. This opens the possibility for non-monotonic vortex-vortex interaction, which is temperature-dependent, and can be further tuned by alterations of the material on the microscopic scale

    Different length-scales for order parameters in two-gap superconductors: the extended Ginzburg-Landau theory

    Full text link
    Using the Ginzburg-Landau theory extended to the next-to-leading order we determine numerically the healing lengths of the two order parameters at the two-gap superconductor/normal metal interface. We demonstrate on several examples that those can be significantly different even in the strict domain of applicability of the Ginzburg-Landau theory. This justifies the use of this theory to describe relevant physics of two-gap superconductors, distinguishing them from their single-gap counterparts. The calculational degree of complexity increases only slightly with respect to the conventional Ginzburg-Landau expansion, thus the extended Ginzburg-Landau model remains numerically far less demanding compared to the full microscopic approaches.Comment: 5 pages, 4 figure

    Two-band superconductors: Hidden criticality deep in the superconducting state

    Full text link
    We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling γ\gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales proportionally to \gamma^(-\mu), with the Landau critical exponent \mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multi-band superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.Comment: 6 pages, 2 figures, Supplementary material included. Accepted for publication in PR

    Critical and non-critical coherence lengths in a two-band superconductor

    Full text link
    We study the peculiarities of coherency in a two-gap superconductor. The both intraband couplings, inducing superconductivity in the independent bands, and interband pair-transfer interaction have been taken into account. On the basis of the Ginzburg-Landau equations derived from the Bogoliubov-de Gennes equations and the relevant self-consistency conditions for a two-gap system, we find critical and non-critical coherence lengths in the spatial behaviour of the fluctuations of order parameters. The character of the temperature dependencies of these length scales is determined by the relative contributions from intra- and interband interaction channels.Comment: Accepted for publication in Journal of Superconductivity and Novel Magnetis

    Odd-Frequency Superconductivity in Sr

    No full text
    corecore