733 research outputs found
Quantum Hall effect in single wide quantum wells
We study the quantum Hall states in the lowest Landau level for a single wide
quantum well. Due to a separation of charges to opposite sides of the well, a
single wide well can be modelled as an effective two level system. We provide
numerical evidence of the existence of a phase transition from an
incompressible to a compressible state as the electron density is increased for
specific well width. Our numerical results show a critical electron density
which depends on well width, beyond which a transition incompressible double
layer quantum Hall state to a mono-layer compressible state occurs. We also
calculate the related phase boundary corresponding to destruction of the
collective mode energy gap. We show that the effective tunneling term and the
interlayer separation are both renormalised by the strong magnetic field. We
also exploite the local density functional techniques in the presence of strong
magnetic field at to calculate renormalized . The
numerical results shows good agreement between many-body calculations and local
density functional techniques in the presence of a strong magnetic field at
. we also discuss implications of this work on the
incompressible state observed in SWQW.Comment: 30 pages, 7 figures (figures are not included
Magnetic-Field-Induced Hybridization of Electron Subbands in a Coupled Double Quantum Well
We employ a magnetocapacitance technique to study the spectrum of the soft
two-subband (or double-layer) electron system in a parabolic quantum well with
a narrow tunnel barrier in the centre. In this system unbalanced by gate
depletion, at temperatures T\agt 30 mK we observe two sets of quantum
oscillations: one originates from the upper electron subband in the
closer-to-the-gate part of the well and the other indicates the existence of
common gaps in the spectrum at integer fillings. For the lowest filling factors
and , both the common gap presence down to the point of one- to
two-subband transition and their non-trivial magnetic field dependences point
to magnetic-field-induced hybridization of electron subbands.Comment: Major changes, added one more figure, the latest version to be
published in JETP Let
Half-Integral Spin-Singlet Quantum Hall Effect
We provide numerical evidence that the ground state of a short range
interaction model at is incompressible and spin-singlet for a wide
range of repulsive interactions. Furthermore it is accurately described by a
trial wave function studied earlier. For the Coulomb interaction we find that
this wave function provides a good description of the lowest lying spin-singlet
state, and propose that fractional quantum Hall effect would occur at
if this state became the global ground state.Comment: Latex 13 pages, 3 figures upon reques
Hysteresis in the Random Field Ising Model and Bootstrap Percolation
We study hysteresis in the random-field Ising model with an asymmetric
distribution of quenched fields, in the limit of low disorder in two and three
dimensions. We relate the spin flip process to bootstrap percolation, and show
that the characteristic length for self-averaging increases as in 2d, and as in 3d, for disorder
strength much less than the exchange coupling J. For system size , the coercive field varies as for
the square lattice, and as on the cubic lattice.
Its limiting value is 0 for L tending to infinity, both for square and cubic
lattices. For lattices with coordination number 3, the limiting magnetization
shows no jump, and tends to J.Comment: 4 pages, 4 figure
Shifting the quantum Hall plateau level in a double layer electron system
We study the plateaux of the integer quantum Hall resistance in a bilayer
electron system in tilted magnetic fields. In a narrow range of tilt angles and
at certain magnetic fields, the plateau level deviates appreciably from the
quantized value with no dissipative transport emerging. A qualitative account
of the effect is given in terms of decoupling of the edge states corresponding
to different electron layers/Landau levels.Comment: 3 pages, 3 figures include
The Head-On Collision of Two Equal Mass Black Holes Peter Anninos
We study the head-on collision of two equal mass, nonrotating black holes.
Various initial configurations are investigated, including holes which are
initially surrounded by a common apparent horizon to holes that are separated
by about , where is the mass of a single black hole. We have extracted
both and gravitational waveforms resulting from the
collision. The normal modes of the final black hole dominate the spectrum in
all cases studied. The total energy radiated is computed using several
independent methods, and is typically less than . We also discuss an
analytic approach to estimate the total gravitational radiation emitted in the
collision by generalizing point particle dynamics to account for the finite
size and internal dynamics of the two black holes. The effects of the tidal
deformations of the horizons are analysed using the membrane paradigm of black
holes. We find excellent agreement between the numerical results and the
analytic estimates.Comment: 33 pages, NCSA 94-048, WUGRAV-94-
Evidence for a Goldstone Mode in a Double Layer Quantum Hall System
The tunneling conductance between two parallel 2D electron systems has been
measured in a regime of strong interlayer Coulomb correlations. At total Landau
level filling the tunnel spectrum changes qualitatively when the
boundary separating the compressible phase from the ferromagnetic quantized
Hall state is crossed. A huge resonant enhancement replaces the strongly
suppressed equilibrium tunneling characteristic of weakly coupled layers. The
possible relationship of this enhancement to the Goldstone mode of the broken
symmetry ground state is discussed.Comment: 4 pages, 3 figures, 2 minor typeos fixe
Event Horizons in Numerical Relativity II: Analyzing the Horizon
We present techniques and methods for analyzing the dynamics of event
horizons in numerically constructed spacetimes. There are three classes of
analytical tools we have investigated. The first class consists of proper
geometrical measures of the horizon which allow us comparison with perturbation
theory and powerful global theorems. The second class involves the location and
study of horizon generators. The third class includes the induced horizon
2-metric in the generator comoving coordinates and a set of membrane-paradigm
like quantities. Applications to several distorted, rotating, and colliding
black hole spacetimes are provided as examples of these techniques.Comment: 23 double column pages including 28 figures. Higher quality figures
(big size!) available upon request (jmasso OR [email protected]
Quantum Hall Ferromagnets
It is pointed out recently that the quantum Hall states in bilayer
systems behave like easy plane quantum ferromagnets. We study the
magnetotransport of these systems using their ``ferromagnetic" properties and a
novel spin-charge relation of their excitations. The general transport is a
combination of the ususal Hall transport and a time dependent transport with
time average. The latter is due to a phase slippage process in
and is characterized by two topological constants. (Figures will be
provided upon requests).Comment: 4 pages, Revtex, Ohio State Universit
Hysteresis and the dynamic phase transition in thin ferromagnetic films
Hysteresis and the non-equilibrium dynamic phase transition in thin magnetic
films subject to an oscillatory external field have been studied by Monte Carlo
simulation. The model under investigation is a classical Heisenberg spin system
with a bilinear exchange anisotropy in a planar thin film geometry with
competing surface fields. The film exhibits a non-equilibrium phase transition
between dynamically ordered and dynamically disordered phases characterized by
a critical temperature Tcd, whose location of is determined by the amplitude H0
and frequency w of the applied oscillatory field. In the presence of competing
surface fields the critical temperature of the ferromagnetic-paramagnetic
transition for the film is suppressed from the bulk system value, Tc, to the
interface localization-delocalization temperature Tci. The simulations show
that in general Tcd < Tci for the model film. The profile of the time-dependent
layer magnetization across the film shows that the dynamically ordered and
dynamically disordered phases coexist within the film for T < Tcd. In the
presence of competing surface fields, the dynamically ordered phase is
localized at one surface of the film.Comment: PDF file, 21 pages including 8 figure pages; added references,typos
added; to be published in PR
- …