40,159 research outputs found

    Determination of heat transfer coefficient for hot stamping process

    Get PDF
    © 2015 The Authors.The selection of the heat transfer coefficient is one of the most important factors that determine the reliability of FE simulation results of a hot stamping process, in which the formed component is held within cold dies until fully quenched. The quenching process could take up to 10. seconds. In order to maximise the production rate, the optimised quenching parameters should be identified to achieve the highest possible quenching rate and to reduce the quenching time. For this purpose, a novel-testing rig for the Gleeble 3800 thermo- mechanical simulator was designed and manufactured, with an advanced control system for temperature and contact pressure. The effect of contact pressure on the heat transfer coefficient was studied. The findings of this research will provide useful guidelines for the selection of the heat transfer coefficient in simulations of hot stamping processes and useful information for the design of hot stamping processes

    Lorentz Symmetry and the Internal Structure of the Nucleon

    Full text link
    To investigate the internal structure of the nucleon, it is useful to introduce quantities that do not transform properly under Lorentz symmetry, such as the four-momentum of the quarks in the nucleon, the amount of the nucleon spin contributed by quark spin, etc. In this paper, we discuss to what extent these quantities do provide Lorentz-invariant descriptions of the nucleon structure.Comment: 6 pages, no figur

    Single-Electron Traps: A Quantitative Comparison of Theory and Experiment

    Full text link
    We have carried out a coordinated experimental and theoretical study of single-electron traps based on submicron aluminum islands and aluminum oxide tunnel junctions. The results of geometrical modeling using a modified version of MIT's FastCap were used as input data for the general-purpose single-electron circuit simulator MOSES. The analysis indicates reasonable quantitative agreement between theory and experiment for those trap characteristics which are not affected by random offset charges. The observed differences between theory and experiment (ranging from a few to fifty percent) can be readily explained by the uncertainty in the exact geometry of the experimental nanostructures.Comment: 17 pages, 21 figures, RevTex, eps

    The box diagram in Yukawa theory

    Full text link
    We present a light-front calculation of the box diagram in Yukawa theory. The covariant box diagram is finite for the case of spin-1/2 constituents exchanging spin-0 particles. In light-front dynamics, however, individual time-ordered diagrams are divergent. We analyze the corresponding light-front singularities and show the equivalence between the light-front and covariant results by taming the singularities.Comment: 21 pages, 17 figures. submittes to Phys. Rev.

    Quark Orbital-Angular-Momentum Distribution in the Nucleon

    Get PDF
    We introduce gauge-invariant quark and gluon angular momentum distributions after making a generalization of the angular momentum density operators. From the quark angular momentum distribution, we define the gauge-invariant and leading-twist quark {\it orbital} angular momentum distribution Lq(x)L_q(x). The latter can be extracted from data on the polarized and unpolarized quark distributions and the off-forward distribution E(x)E(x) in the forward limit. We comment upon the evolution equations obeyed by this as well as other orbital distributions considered in the literature.Comment: 8 pages, latex, no figures, minor corrections mad

    The General Theory of Quantum Field Mixing

    Get PDF
    We present a general theory of mixing for an arbitrary number of fields with integer or half-integer spin. The time dynamics of the interacting fields is solved and the Fock space for interacting fields is explicitly constructed. The unitary inequivalence of the Fock space of base (unmixed) eigenstates and the physical mixed eigenstates is shown by a straightforward algebraic method for any number of flavors in boson or fermion statistics. The oscillation formulas based on the nonperturbative vacuum are derived in a unified general formulation and then applied to both two and three flavor cases. Especially, the mixing of spin-1 (vector) mesons and the CKM mixing phenomena in the Standard Model are discussed emphasizing the nonperturbative vacuum effect in quantum field theory
    • …
    corecore