47 research outputs found

    Laser cooling of a diatomic molecule

    Full text link
    It has been roughly three decades since laser cooling techniques produced ultracold atoms, leading to rapid advances in a vast array of fields. Unfortunately laser cooling has not yet been extended to molecules because of their complex internal structure. However, this complexity makes molecules potentially useful for many applications. For example, heteronuclear molecules possess permanent electric dipole moments which lead to long-range, tunable, anisotropic dipole-dipole interactions. The combination of the dipole-dipole interaction and the precise control over molecular degrees of freedom possible at ultracold temperatures make ultracold molecules attractive candidates for use in quantum simulation of condensed matter systems and quantum computation. Also ultracold molecules may provide unique opportunities for studying chemical dynamics and for tests of fundamental symmetries. Here we experimentally demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using an optical cycling scheme requiring only three lasers, we have observed both Sisyphus and Doppler cooling forces which have substantially reduced the transverse temperature of a SrF molecular beam. Currently the only technique for producing ultracold molecules is by binding together ultracold alkali atoms through Feshbach resonance or photoassociation. By contrast, different proposed applications for ultracold molecules require a variety of molecular energy-level structures. Our method provides a new route to ultracold temperatures for molecules. In particular it bridges the gap between ultracold temperatures and the ~1 K temperatures attainable with directly cooled molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams). Ultimately our technique should enable the production of large samples of molecules at ultracold temperatures for species that are chemically distinct from bialkalis.Comment: 10 pages, 7 figure

    Ökologische Untersuchungen zur Nitrifikation in Nord-und Ostsee

    Get PDF
    Ammonia, nitrite and nitrate were regularly estimated at several stations in the Kieler Bucht (western Baltic Sea) since November 1964. There are considerable seasonal changes in the contents of these 3 nitrogen compounds with impressive maxima of nitrite and nitrate in February or at the beginning of March. The great increase of nitrite and nitrate during the winter and also a smaller increase in summer are mainly caused by oxidation of ammonia, first to nitrite and then to nitrate, by nitrifying bacteria. In consequence chemoautotrophic nitrite- and nitratebacteria could be found in the water as well as in sediments all over the Kieler Bucht and also in the North Sea around the isle of Helgoland. These nitrifying bacteria are able to oxidize ammonia or nitrite in salinity conditions typical for the western Baltic Sea and the North Sea

    Status of Biodiversity in the Baltic Sea

    Get PDF
    The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity

    Spawning of bluefin tuna in the black sea: historical evidence, environmental constraints and population plasticity

    Get PDF
    <div><p>The lucrative and highly migratory Atlantic bluefin tuna, <em>Thunnus thynnus</em> (Linnaeus 1758<em>;</em> Scombridae), used to be distributed widely throughout the north Atlantic Ocean, Mediterranean Sea and Black Sea. Its migrations have supported sustainable fisheries and impacted local cultures since antiquity, but its biogeographic range has contracted since the 1950s. Most recently, the species disappeared from the Black Sea in the late 1980s and has not yet recovered. Reasons for the Black Sea disappearance, and the species-wide range contraction, are unclear. However bluefin tuna formerly foraged and possibly spawned in the Black Sea. Loss of a locally-reproducing population would represent a decline in population richness, and an increase in species vulnerability to perturbations such as exploitation and environmental change. Here we identify the main genetic and phenotypic adaptations that the population must have (had) in order to reproduce successfully in the specific hydrographic (estuarine) conditions of the Black Sea. By comparing hydrographic conditions in spawning areas of the three species of bluefin tunas, and applying a mechanistic model of egg buoyancy and sinking rate, we show that reproduction in the Black Sea must have required specific adaptations of egg buoyancy, fertilisation and development for reproductive success. Such adaptations by local populations of marine fish species spawning in estuarine areas are common as is evident from a meta-analysis of egg buoyancy data from 16 species of fish. We conclude that these adaptations would have been necessary for successful local reproduction by bluefin tuna in the Black Sea, and that a locally-adapted reproducing population may have disappeared. Recovery of bluefin tuna in the Black Sea, either for spawning or foraging, will occur fastest if any remaining locally adapted individuals are allowed to survive, and by conservation and recovery of depleted Mediterranean populations which could through time re-establish local Black Sea spawning and foraging.</p> </div

    Positive feedbacks and alternative stable states in forest leaf types

    Get PDF
    The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks

    Early post-convulsive prolongation of QT time in children

    Full text link
    Aim: An important differential diagnosis of seizures in childhood is the long QT syndrome. Childhood epilepsy occurs about 400 times more often than long QT syndrome. We had observed children with slight post-convulsive prolongation of QT time more often than the reported incidence of long QT syndrome. We therefore conducted a prospective study to define the characteristics of post-convulsive prolongation of QT time in children. Methods: We investigated 30 consecutive infants and children (3 mo to 14 y) within 2 h after seizures. A follow-up ECG was obtained 1–9 d later. We also obtained ECGs from 30 healthy age- and gender-matched controls. We calculated the QT interval corrected for heart rate (QTc) by Bazett's formula in leads II, V5, V6, QT dispersion and the number of notched T waves. Results: We found a QTc interval of more than 440 ms in one or more leads in the first ECG in seven of 30 infants and children compared to 1 of 30 in the follow-up ECG (p=0.0003) and two of 30 in the healthy controls (p=0.14). Average QTc was higher for all leads in the first ECG. This was statistically significant in leads II (414 vs 402 ms, p=0.008), V5 (416 vs 404 ms, p=0.002) and V6 (415 vs 399 ms, p=0.001). Compared to healthy controls, QT dispersion was slightly larger in the early post-convulsive ECG (36 vs 31 ms, p=0.03). Notched T waves occurred more frequently in the early compared to the late post-convulsive ECGs (p=0.009). Conclusion: Slight to moderate post-convulsive prolongation of the QT interval is not rare but transient in paediatric patients
    corecore