22 research outputs found

    A new growth process for crystalline ultra-thin layers of conjugated oligomers used in field-effect transistor applications

    Get PDF
    Most organic semiconductor materials dewet on silicon wafers with thermal oxide layers. While Si-wafers represent convenient substrates for building a field effect transistor (FET), dewetting largely destroys the possibility for obtaining a compact and continuous crystalline thin organic semiconductor film and thus limits the mobility in these systems. Using oligothiophenes, we present an approach where the initial dewetting process can be turned into an advantage for generating very thin but large crystalline domains of a size up to the millimetres with all molecules sharing a single orientation. Our approach can be easily extended to other molecules, which have strongly differing growth velocities in the various directions of the crystal, for example due to directional π-stacking interactions. FETs devices based on such large crystalline domains showed charge carrier mobilities that were two orders of magnitude higher compared to non-crystallized films

    Evaluation of transduction efficiency in macrophage colony-stimulating factor differentiated human macrophages using HIV-1 based lentiviral vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monocyte-derived macrophages contribute to atherosclerotic plaque formation. Therefore, manipulating macrophage function could have significant therapeutic value. The objective of this study was to determine transduction efficiency of two HIV-based lentiviral vector configurations as delivery systems for the transduction of primary human blood monocyte-derived macrophages.</p> <p>Results</p> <p>Human blood monocytes were transduced using two VSV-G pseudotyped HIV-1 based lentiviral vectors containing EGFP expression driven by either native HIV-LTR (VRX494) or EF1α promoters (VRX1090). Lentiviral vectors were added to cultured macrophages at different times and multiplicities of infection (MOI). Transduction efficiency was assessed using fluorescence microscopy and flow cytometry. Macrophages transduced between 2 and 120 hours after culturing showed the highest transduction efficiency at 2-hours transduction time. Subsequently, cells were transduced 2 hours after culturing at various vector concentrations (MOIs of 5, 10, 25 and 50) to determine the amount of lentiviral vector particles required to maximally transduce human monocyte-derived macrophages. On day 7, all transduced cultures showed EGFP-positive cells by microscopy. Flow cytometric analysis showed with all MOIs a peak shift corresponding to the presence of EGFP-positive cells. For VRX494, transduction efficiency was maximal at an MOI of 25 to 50 and ranged between 58 and 67%. For VRX1090, transduction efficiency was maximal at an MOI of 10 and ranged between 80 and 90%. Thus, transductions performed with VRX1090 showed a higher number of EGFP-positive cells than VRX494.</p> <p>Conclusions</p> <p>This report shows that VSV-G pseudotyped HIV-based lentiviral vectors can efficiently transduce human blood monocyte-derived macrophages early during differentiation using low particle numbers that do not interfere with differentiation of monocytes into macrophages.</p

    The Host Range of Gammaretroviruses and Gammaretroviral Vectors Includes Post-Mitotic Neural Cells

    Get PDF
    Gammaretroviruses and gammaretroviral vectors, in contrast to lentiviruses and lentiviral vectors, are reported to be restricted in their ability to infect growth-arrested cells. The block to this restriction has never been clearly defined. The original assessment of the inability of gammaretroviruses and gammaretroviral vectors to infect growth-arrested cells was carried out using established cell lines that had been growth-arrested by chemical means, and has been generalized to neurons, which are post-mitotic. We re-examined the capability of gammaretroviruses and their derived vectors to efficiently infect terminally differentiated neuroendocrine cells and primary cortical neurons, a target of both experimental and therapeutic interest.Using GFP expression as a marker for infection, we determined that both growth-arrested (NGF-differentiated) rat pheochromocytoma cells (PC12 cells) and primary rat cortical neurons could be efficiently transduced, and maintained long-term protein expression, after exposure to murine leukemia virus (MLV) and MLV-based retroviral vectors. Terminally differentiated PC12 cells transduced with a gammaretroviral vector encoding the anti-apoptotic protein Bcl-xL were protected from cell death induced by withdrawal of nerve growth factor (NGF), demonstrating gammaretroviral vector-mediated delivery and expression of genes at levels sufficient for therapeutic effect in non-dividing cells. Post-mitotic rat cortical neurons were also shown to be susceptible to transduction by murine replication-competent gammaretroviruses and gammaretroviral vectors.These findings suggest that the host range of gammaretroviruses includes post-mitotic and other growth-arrested cells in mammals, and have implications for re-direction of gammaretroviral gene therapy to neurological disease

    Restriction of HIV-1 Replication in Monocytes Is Abolished by Vpx of SIVsmmPBj

    Get PDF
    Background: Human primary monocytes are refractory to infection with the human immunodeficiency virus 1 (HIV-1) or transduction with HIV-1-derived vectors. In contrast, efficient single round transduction of monocytes is mediated by vectors derived from simian immunodeficiency virus of sooty mangabeys (SIVsmmPBj), depending on the presence of the viral accessory protein Vpx. Methods and Findings: Here we analyzed whether Vpx of SIVsmmPBj is sufficient for transduction of primary monocytes by HIV-1-derived vectors. To enable incorporation of PBj Vpx into HIV-1 vector particles, a HA-Vpr/Vpx fusion protein was generated. Supplementation of HIV-1 vector particles with this fusion protein was not sufficient to facilitate transduction of human monocytes. However, monocyte transduction with HIV-1-derived vectors was significantly enhanced after delivery of Vpx proteins by virus-like particles (VLPs) derived from SIVsmmPBj. Moreover, pre-incubation with Vpx-containing VLPs restored replication capacity of infectious HIV-1 in human monocytes. In monocytes of non-human primates, single-round transduction with HIV-1 vectors was enabled. Conclusion: Vpx enhances transduction of primary human and even non-human monocytes with HIV-1-derived vectors, only if delivered in the background of SIVsmmPBj-derived virus-like particles. Thus, for accurate Vpx function the presence of SIVsmmPBj capsid proteins might be required. Vpx is essential to overcome a block of early infection steps in primary monocytes

    HIV infection of non-dividing cells: a divisive problem

    Get PDF
    Understanding how lentiviruses can infect terminally differentiated, non-dividing cells has proven a very complex and controversial problem. It is, however, a problem worth investigating, for it is central to HIV-1 transmission and AIDS pathogenesis. Here I shall attempt to summarise what is our current understanding for HIV-1 infection of non-dividing cells. In some cases I shall also attempt to make sense of controversies in the field and advance one or two modest proposals

    Amplification of Acetylcholine-Binding Catenanes from Dynamic Combinatorial Libraries

    No full text
    Directed chemical synthesis can produce a vast range of molecular structures, but the intended product must be known at the outset. In contrast, evolution in nature can lead to efficient receptors and catalysts whose structures defy prediction. To access such unpredictable structures, we prepared dynamic combinatorial libraries in which reversibly binding building blocks assemble around a receptor target. We selected for an acetylcholine receptor by adding the neurotransmitter to solutions of dipeptide hydrazones [proline-phenylalanine or proline-(cyclohexyl)alanine], which reversibly combine through hydrazone linkages. At thermodynamic equilibrium, the dominant receptor structure was an elaborate [2]-catenane consisting of two interlocked macrocyclic trimers. This complex receptor with a 100 nM affinity for acetylcholine could be isolated on a preparative scale in 67% yield.
    corecore