68,518 research outputs found
RISK BALANCING USING FARM LEVEL DATA: AN ECONOMETRIC ANALYSIS
In the paper, an econometric model is proposed to test the risk balancing hypothesis using farm level data. For the purpose, a constraint on expected utility maximization with respect to farm financial structure is given. Cluster method is applied to pick out the farms on the efficient frontier under expected utility maximization given risk attitude and actual interest rate. Regression results are given and compared to previous findings. Farm characteristics associated with the risk behaviors of farms with optimal utility are identified and compared with other farms.Risk and Uncertainty,
Mathematical modelling and experimental validation of electrostatic sensors for rotational speed measurement
Recent research has demonstrated that electrostatic sensors can be applied to the measurement of rotational speed with excellent repeatability and accuracy under a range of conditions. However, the sensing mechanism and fundamental characteristics of the electrostatic sensors are still largely unknown and hence the design of the sensors is not optimised for rotational speed measurement. This paper presents the mathematical modelling of strip electrostatic sensors for rotational speed measurement and associated experimental studies for the validation of the modelling results. In the modelling, an ideal point charge on the surface of the rotating object is regarded as an impulse input to the sensing system. The fundamental characteristics of the sensor, including spatial sensitivity, spatial filtering length and signal bandwidth, are quantified from the developed model. The effects of the geometric dimensions of the electrode, the distance between the electrode and the rotor surface and the rotational speed being measured on the performance of the sensor are analyzed. A close agreement between the modelling results and experimental measurements has been observed under a range of conditions. Optimal design of the electrostatic sensor for a given rotor size is suggested and discussed in accordance with the modelling and experimental results
Evolution of shear-induced melting in dusty plasma
The spatiotemporal development of melting is studied experimentally in a 2D
dusty plasma suspension. Starting with an ordered lattice, and then suddenly
applying localized shear, a pair of counter-propagating flow regions develop. A
transition between two melting stages is observed before a steady state is
reached. Melting spreads with a front that propagates at the transverse sound
speed. Unexpectedly, coherent longitudinal waves are excited in the flow
region.Comment: 5 pages text, 3 figures, in press Physical Review Letters 2010
Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications
The South China Sea (SCS) experienced three episodes of seafloor spreading and left three fossil spreading centers presently located at 18°N, 17°N and 15.5°N. Spreading ceased at these three locations during magnetic anomaly 10, 8, and 5c, respectively. Daimao Seamount (16.6. Ma) was formed 10. my after the cessation of the 17°N spreading center. Volcaniclastic rocks and shallow-water carbonate facies near the summit of Daimao Seamount provide key information on the seamount's geologic history. New major and trace element and Sr-Nd-Pb isotopic compositions of basaltic breccia clasts in the volcaniclastics suggest that Daimao and other SCS seamounts have typical ocean island basalt-like composition and possess a 'Dupal' isotopic signature. Our new analyses, combined with available data, indicate that the basaltic foundation of Daimao Seamount was formed through subaqueous explosive volcanic eruptions at 16.6. Ma. The seamount subsided rapidly (>. 0.12. mm/y) at first, allowing the deposition of shallow-water, coral-bearing carbonates around its summit and, then, at a slower rate (<. 0.12. mm/y). We propose that the parental magmas of SCS seamount lavas originated from the Hainan mantle plume. In contrast, lavas from contemporaneous seamounts in other marginal basins in the western Pacific are subduction-related
Bias-induced insulator-metal transition in organic electronics
We investigate the bias-induced insulator-metal transition in organic
electronics devices, on the basis of the Su-Schrieffer-Heeger model combined
with the non-equilibrium Green's function formalism. The insulator-metal
transition is explained with the energy levels crossover that eliminates the
Peierls phase and delocalizes the electron states near the threshold voltage.
This may account for the experimental observations on the devices that exhibit
intrinsic bistable conductance switching with large on-off ratio.Comment: 6 pages, 3 figures. To appear in Applied Physics Letter
- …