46 research outputs found

    X-ray Absorption Study of Pulsed Laser Deposited Boron Nitride Films

    Full text link
    B and N K-edge x-ray absorption spectroscopy measurements have been performed on three BN thin films grown on Si substrates using ion-assisted pulsed laser deposition. Comparison of the films' spectra to those of several single-phase BN powder standards shows that the films consist primarily of sp2sp^2 bonds. Other features in the films' spectra suggest the presence of secondary phases, possibly cubic or rhombohedral BN. Films grown at higher deposition rates and higher ion-beam voltages are found to be more disordered, in agreement with previous work.Comment: 7 pages, LaTeX 2.09. Figures not included, but available by fax. Send email to [email protected]

    X-ray photoemission electron microscopy for the study of semiconductor materials

    Full text link
    Photoemission Electron Microscopy (PEEM) using X-rays is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper the authors give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments

    Differential Photoelectron Holography: A New Approach for Three-Dimensional Atomic Imaging

    Full text link
    We propose differential holography as a method to overcome the long-standing forward-scattering problem in photoelectron holography and related techniques for the three-dimensional imaging of atoms. Atomic images reconstructed from experimental and theoretical Cu 3p holograms from Cu(001) demonstrate that this method suppresses strong forward-scattering effects so as to yield more accurate three-dimensional images of side- and back-scattering atoms.Comment: revtex, 4 pages, 2 figure

    Bonding and hardness in nonhydrogenated carbon films with moderate sp3 content

    Get PDF
    Amorphous carbon films with an s p{sup 3} content up to 25% and a negligible amount of hydrogen have been grown by evaporation of graphite and concurrent Ar{sup +} ion bombardment. The s p{sup 3} content is maximized for Ar{sup +} energies between 200 and 300 eV following a subplantation mechanism. Higher ion energies deteriorate the film due to sputtering and heating processes. The hardness of the films increases in the optimal assisting range from 8 to 18 GPa, and is explained by the crosslinking of graphitic planes through s p {sup 3} connecting site
    corecore