2,264 research outputs found
Theory of preparation and relaxation of a p-orbital atomic Mott insulator
We develop a theoretical framework to understand the preparation and
relaxation of a metastable Mott insulator state within the first excited band
of a 1D optical lattice. The state is loaded by "lifting" atoms from the ground
to the first excited band by means of a stimulated Raman transition. We
determine the effect of pulse duration on the accuracy of the state preparation
for the case of a Gaussian pulse shape. Relaxation of the prepared state occurs
in two major stages: double-occupied sites occurring due to quantum
fluctuations initially lead to interband transitions followed by a spreading of
particles in the trap and thermalization. We find the characteristic relaxation
times at the earliest stage and at asymptotically long times approaching
equilibrium. Our theory is applicable to recent experiments performed with 1D
optical lattices [T. M\"uller, S. F\"olling, A. Widera, and I. Bloch, Phys.
Rev. Lett. \textbf{99}, 200405 (2007)].Comment: 27 pages, 23 figures: Edited figures, added reference
Solitary-wave description of condensate micro-motion in a time-averaged orbiting potential trap
We present a detailed theoretical analysis of micro-motion in a time-averaged
orbiting potential trap. Our treatment is based on the Gross-Pitaevskii
equation, with the full time dependent behaviour of the trap systematically
approximated to reduce the trapping potential to its dominant terms. We show
that within some well specified approximations, the dynamic trap has
solitary-wave solutions, and we identify a moving frame of reference which
provides the most natural description of the system. In that frame eigenstates
of the time-averaged orbiting potential trap can be found, all of which must be
solitary-wave solutions with identical, circular centre of mass motion in the
lab frame. The validity regime for our treatment is carefully defined, and is
shown to be satisfied by existing experimental systems.Comment: 12 pages, 2 figure
The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin
There is a continuing need to discover new bioactive natural products, such as antibiotics, in genetically-amenable micro-organisms. We observed that the enteric insect pathogen, Serratia marcescens Db10, produced a diffusible compound that inhibited the growth of Bacillis subtilis and Staphyloccocus aureus. Mapping the genetic locus required for this activity revealed a putative natural product biosynthetic gene cluster, further defined to a six-gene operon named alb1-alb6. Bioinformatic analysis of the proteins encoded by alb1-6 predicted a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly line (Alb4/5/6), tailoring enzymes (Alb2/3) and an export/resistance protein (Alb1), and suggested that the machinery assembled althiomycin or a related molecule. Althiomycin is a ribosome-inhibiting antibiotic whose biosynthetic machinery had been elusive for decades. Chromatographic and spectroscopic analyses confirmed that wild type S. marcescens produced althiomycin and that production was eliminated on disruption of the alb gene cluster. Construction of mutants with in-frame deletions of specific alb genes demonstrated that Alb2-Alb5 were essential for althiomycin production, whereas Alb6 was required for maximal production of the antibiotic. A phosphopantetheinyl transferase enzyme required for althiomycin biosynthesis was also identified. Expression of Alb1, a predicted major facilitator superfamily efflux pump, conferred althiomycin resistance on another, sensitive, strain of S. marcescens. This is the first report of althiomycin production outside of the Myxobacteria or Streptomyces and paves the way for future exploitation of the biosynthetic machinery, since S. marcescens represents a convenient and tractable producing organism
Self-consistent pedestal prediction for JET-ILW in preparation of the DT campaign
The self-consistent core-pedestal prediction model of a combination of EPED1 type pedestal prediction and a simple stiff core transport model is able to predict Type I ELMy (edge localized mode) pedestals of a large JET-ILW (ITER-like wall) database at the similar accuracy as is obtained when the experimental global plasma beta is used as input. The neutral penetration model [R. J. Groebner et al., Phys. Plasmas 9, 2134 (2002)] with corrections that take into account variations due to gas fueling and plasma triangularity is able to predict the pedestal density with an average error of 15%. The prediction of the pedestal pressure in hydrogen plasma that has higher core heat diffusivity compared to a deuterium plasma with similar heating and fueling agrees with the experiment when the isotope effect on the stability, the increased diffusivity, and outward radial shift of the pedestal are included in the prediction. However, the neutral penetration model that successfully predicts the deuterium pedestal densities fails to predict the isotope effect on the pedestal density in hydrogen plasmas
Impact of active and passive social facilitation on self paced endurance and sprint exercise: encouragement augments performance and motivation to exercise
Objective
The positive effect of an audience on performance is anecdotally well known, but the impact of such social facilitation to both performance and the motivation to exercise have not been thoroughly explored. The aim of this study was therefore to investigate verbal encouragement as a means to promote positive behavioural adherence to exercise and augmented performance.
Methods
Twelve untrained but active individuals (seven female), age 24±3 years participated in this study. Exercise conditions with external verbal encouragement (EVE) and without external verbal encouragement (WEVE) were compared in both endurance (20 min) and sprint (2 × 30 s Wingate) cycling tasks in a randomised crossover design. Results were analysed by separate 2 (EVE/WEVE) × 2 (sprint/endurance) within-subjects analyses of variance for each dependent variable. Statistical significance was set at p≤0.05.
Results
EVE resulted in a significant increase, F (1,11)=15.37, p=0.002, η p 2=0.58 in the average power generated by participants in each exercise bout on the cycle ergometer. EVE also had a significant effect on reported motivation to exercise the next day, F (1,11)=5.5, p=0.04, η p 2 =0.33, which did not differ between type of exercise.
Conclusion
External encouragement in both sprint and endurance activities resulted in large improvements in performance and motivation to continue an exercise regimen the next day, which has important implications for health, adherence and maximising physical performance using a practical intervention
iPTF15eqv: Multi-wavelength Expos\'e of a Peculiar Calcium-rich Transient
The progenitor systems of the class of "Ca-rich transients" is a key open
issue in time domain astrophysics. These intriguing objects exhibit unusually
strong calcium line emissions months after explosion, fall within an
intermediate luminosity range, are often found at large projected distances
from their host galaxies, and may play a vital role in enriching galaxies and
the intergalactic medium. Here we present multi-wavelength observations of
iPTF15eqv in NGC 3430, which exhibits a unique combination of properties that
bridge those observed in Ca-rich transients and Type Ib/c supernovae. iPTF15eqv
has among the highest [Ca II]/[O I] emission line ratios observed to date, yet
is more luminous and decays more slowly than other Ca-rich transients. Optical
and near-infrared photometry and spectroscopy reveal signatures consistent with
the supernova explosion of a < 10 solar mass star that was stripped of its
H-rich envelope via binary interaction. Distinct chemical abundances and ejecta
kinematics suggest that the core collapse occurred through electron capture
processes. Deep limits on possible radio emission made with the Jansky Very
Large Array imply a clean environment ( 0.1 cm) within a radius of
cm. Chandra X-ray Observatory observations rule out alternative
scenarios involving tidal disruption of a white dwarf by a black hole, for
masses > 100 solar masses). Our results challenge the notion that
spectroscopically classified Ca-rich transients only originate from white dwarf
progenitor systems, complicate the view that they are all associated with large
ejection velocities, and indicate that their chemical abundances may vary
widely between events.Comment: 24 pages, 16 figures. Closely matches version published in The
Astrophysical Journa
Extrapolations of the fusion performance in JET
n preparation of the forthcoming high power campaign with the reactor-relevant deuterium-tritium (DT) fuel mixture in the Joint European Torus (JET), significant efforts are being devoted to DT scenario extrapolation using computer modelling. We report on simulations aimed at optimizing external heating using neutral beam injection (NBI) and radiofrequency waves in the ion cyclotron range of frequencies (ICRF) for high DT fusion yield. Our results show that by increasing external heating power to the maximum power available, the fusion neutron rate can be enhanced by a factor of 4-5 with respect to the recent record values. The comparison of two ICRF schemes using different resonant ion species, i.e. 3He and H minority ions, shows that the 3He minority heating scenario achieves a higher fuel ion temperature but not necessarily a better fusion performance. Finally, we study the dependence of the performance of external heating on key experimental parameters
- …