24 research outputs found
8-Triazolylpurines: Towards Fluorescent Inhibitors of the MDM2/p53 Interaction
Small molecule nonpeptidic mimics of alpha-helices are widely recognised as protein-protein interaction (PPIs) inhibitors. Protein-protein interactions mediate virtually all important regulatory pathways in a cell, and the ability to control and modulate PPIs is therefore of great significance to basic biology, where controlled disruption of protein networks is key to understanding network connectivity and function. We have designed and synthesised two series of 2,6,9-substituted 8-triazolylpurines as alpha-helix mimetics. The first series was designed based on low energy conformations but did not display any biological activity in a biochemical fluorescence polarisation assay targeting MDM2/p53. Although solution NMR conformation studies demonstrated that such molecules could mimic the topography of an alpha-helix, docking studies indicated that the same compounds were not optimal as inhibitors for the MDM2/p53 interaction. A new series of 8-triazolylpurines was designed based on a combination of docking studies and analysis of recently published inhibitors. The best compound displayed low micromolar inhibitory activity towards MDM2/p53 in a biochemical fluorescence polarisation assay. In order to evaluate the applicability of these compounds as biologically active and intrinsically fluorescent probes, their absorption/emission properties were measured. The compounds display fluorescent properties with quantum yields up to 50%
Characterization of Sucrose Thin Films for Biomedical Applications
Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11) were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr). Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), scanning electron microscopy (SEM), and differential thermal analysis and thermal gravimetric analysis (TG/DTA). The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC) Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications
Methods of probing the interactions between small molecules and disordered proteins
It is generally recognized that a large fraction of the human proteome is made up of proteins that remain disordered in their native states. Despite the fact that such proteins play key biological roles and are involved in many major human diseases, they still represent challenging targets for drug discovery. A major bottleneck for the identification of compounds capable of interacting with these proteins and modulating their disease-promoting behaviour is the development of effective techniques to probe such interactions. The difficulties in carrying out binding measurements have resulted in a poor understanding of the mechanisms underlying these interactions. In order to facilitate further methodological advances, here we review the most commonly used techniques to probe three types of interactions involving small molecules: (1) those that disrupt functional interactions between disordered proteins; (2) those that inhibit the aberrant aggregation of disordered proteins, and (3) those that lead to binding disordered proteins in their monomeric states. In discussing these techniques, we also point out directions for future developments.Gabriella T. Heller is supported by the Gates Cambridge Trust Scholarship. Francesco A. Aprile is supported by a Senior Research Fellowship award from the Alzheimer’s Society, UK (grant number 317, AS-SF-16-003)
Structural and Antimicrobial Evaluation of Silver Doped Hydroxyapatite-Polydimethylsiloxane Thin Layers
An Ag:HAp (xAg = 0.5) powder was deposited by thermal evaporation technique as coating on a silicon substrate previously covered with a polydimethylsiloxane (PDMS) layer. The Ag:HAp-PDMS layers were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Fourier Transform Infrared Spectroscopy (FT-IR). By infrared spectroscopy analysis, the phase composition of the Ag:HAp-PDMS layers was investigated. The antimicrobial activity of Ag:HAp-PDMS layers was tested against Escherichia coli, Staphylococcus aureus, and Candida albicans microbial strains. The microbial activity decreases significantly for the surveyed time intervals on Ag:HAp-PDMS layers
Evaluation of Samarium Doped Hydroxyapatite, Ceramics for Medical Application: Antimicrobial Activity
Samarium doped hydroxyapatite (Sm:HAp), Ca10-xSmx(PO4)6(OH)2 (HAp), bionanoparticles with different xSm have been successfully synthesized by coprecipitation method. Detailed characterization of samarium doped hydroxyapatite nanoparticles (Sm:HAp-NPs) was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of samarium doped hydroxyapatite was assessed by cell viability. The antibacterial activity of the Sm:HAp-NPs was tested against Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus). A linear increase of antimicrobial activity of P. aeruginosa has been observed when concentrations of Sm:HAp-NPs in the samples with xSm=0.02 were higher than 0.125 mg/mL. For Sm:HAp-NPs with xSm=0.05 a significant increase of antibacterial activity on E. coli was observed in the range 0.5–1 mg/mL. For low concentrations of Sm:HAp-NPs (xSm=0.05) from 0.031 to 0.125 mg/mL a high antibacterial activity on Enterococcus faecalis has been noticed. A growth of the inhibitory effect on S. aureus was observed for all concentrations of Sm:HAp-NPs with xSm=0.02
Porous Methyltrimethoxysilane Coated Nanoscale-Hydroxyapatite for Removing Lead Ions from Aqueous Solutions
The aim of this study was to synthetize new porous nanoparticles based on methyltrimethoxysilane coated hydroxyapatite (MTHAp) for lead removal form aqueous solutions. The morphological and compositional analysis of MTHAp were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Removal experiments of Pb2+ ions were carried out in aqueous solutions with controlled concentration of Pb2+ at a fixed pH value of 3 and 5 respectively. After the removal experiment of Pb2+ ions from solutions, porous hydroxyapatite nanoparticles were transformed into PbMTHAp_3 and PbMTHAp_5 via the adsorption of Pb2+ ions followed by a cation exchange reaction. The X-ray diffraction spectra of PbMTHAp_3 and PbMTHAp_5 revealed that the powders, after removal of the Pb2+ ions, were a mixture of Ca2.5Pb7.5(PO4)6(OH)2, Pb2Ca4(PO4)2(SiO4), and Ca10(PO4)6(OH)2. Our results demonstrate that the porous hydroxyapatite nanoparticles can be used as an adsorbent for removing Pb2+ ions from aqueous solutions
Fabrication, Characterization, and Antimicrobial Activity, Evaluation of Low Silver Concentrations in Silver-Doped Hydroxyapatite Nanoparticles
The aim of this study was the evaluation of (Ca10-xAgx)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years as a major public health problem worldwide. In this paper, we report a comparison of the antimicrobial activity of low concentrations silver-doped hydroxyapatite nanoparticles. The silver-doped nanocrystalline hydroxyapatite powder was synthesized at 100°C in deionised water. The as-prepared Ag:Hap nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, and FT-Raman spectroscopy. X-ray diffraction (XRD) studies demonstrate that powders obtained by coprecipitation at 100°C exhibit the apatite characteristics with good crystal structure, without any new phase or impurities found. FT-IR and FT-Raman spectroscopy revealed the presence of the various vibrational modes corresponding to phosphates and hydroxyl groups and the absence of any band characteristic to silver. The specific microbiological assays demonstrated that Ag:HAp-NPs exhibited antimicrobial features, but interacted differently with the Gram-positive, Gram-negative bacterial and fungal tested strains
The effect of fracture recency on observed 5-year fracture probability: A study based on the FRISBEE cohort
Introduction: Prediction models, especially the FRAX®, are largely used to estimate the fracture risk at ten years, but the current algorithm does not take into account the time elapsed after a fracture. Kanis et al. recently proposed correction factors allowing to adjust the FRAX® score for fracture recency. The objective of this work was to analyze the effect of fracture recency in the FRISBEE cohort. Methods: We identified in the FRISBEE cohort subjects who sustained a validated fracture during the first 5 years following an incident MOF. We calculated their estimated 5-year risk of fracture using FRAX® uncorrected, adjusted for recency and further adjusted for the MOF/hip ratios calibration factors previously derived for the Belgian FRAX®. We compared the fracture risk estimated by FRAX® before and after these corrections to the observed incidence of validated fractures in our cohort. Results: In our ongoing cohort, 376 subjects had a first non-traumatic incident validated MOF after inclusion; 81 had a secondary fracture during the 5 years follow-up period after this index fracture. The FRAX® score significantly under-evaluated the observed incidence of fractures in our cohort by 54.7 % (fracture rate of 9.7 %; 95 % CI, 6.8–12.9 %) if uncorrected (p < 0.001) and by 32.6 % after correction for recency (14.5 %; 95 % CI, 11.1–18.2 %) (p = 0.01). The calibration for MOF/hip ratios improved the prediction (17.5 %; 95 % CI: 13.7–21.4 %) (p = 0.2). After correcting for recency and for calibration, the predicted value was over-evaluated by 22 % (fracture rate of 26.1 %; 95 % CI, 21.6–30.5 %) but this over-evaluation was not significant (p = 0.1). Conclusion: Our data indicate that the correction of the FRAX® score for fracture recency improves fracture prediction. However, correction for calibration and recency tends to overestimate fracture risk in this population of elderly women
Discriminating value of HR-pQCT for fractures in women with similar FRAX scores: A substudy of the FRISBEE cohort
International audienceAreal bone mineral density (aBMD) has a low sensitivity to identify women at high fracture risk. The FRAX algorithm, by combining several clinical risk factors, might improve fracture prediction compared to aBMD alone. Several micro-architectural and biomechanical parameters which can be measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) are associated with fracture risk. HR-pQCT in combination or not with finite element analysis (FEA) may be used to improve bone strength prediction.Our aim was to assess whether HR-pQCT measurements (densities, cortical and trabecular microarchitecture, biomechanical proprieties assessed by FEA) had an added value in predicting fractures in a subgroup of women belonging to the Belgian FRISBEE cohort. One hundred nineteen women who sustained a fracture (aged 60 to 85 years) during the initial follow-up of our cohort had a radius and tibia examination by HR-pQCT and were compared with controls matched for their FRAX score at baseline. We found that low distal radius total (OR = 1.41 [1.07–1.86] per SD, p < 0.05) and trabecular densities (OR = 1.45 [1.10–1.90], p < 0.01), trabecular number (OR = 1.32 [1.01–1.72], p < 0.05), intra individual distribution of separation (OR = 0.73 [0.54–0.99], p < 0.05) as several FEA parameters were significantly associated with fractures. At the distal tibia, impaired cortical density (OR = 1.32 [1.03–1.70] per SD, p < 0.05) and thickness (OR = 1.29 [1.01–1.63], p < 0.05) and apparent modulus (OR = 1.30 [1.01–1.66], p < 0.05) were significantly correlated with fractures. A low ultra distal radial aBMD (UDR) measured at the time of HR-pQCT was significantly associated with fractures (OR = 1.67 [1.22–2.28], p < 0.01). Women from both groups were followed further after the realization of the HR-pQCT and 46 new fractures were registered. In this second part of the study, low UDR aBMD (OR = 1.66 [1.18–2.35], p < 0.01), total (OR = 1.48 [1.08–2.03], p < 0.05), cortical (OR = 1.40 [1.04–1.87], p < 0.05) and trabecular (OR = 1.37 [1.01–1.85], p < 0.05) densities or apparent modulus (OR = 1.49 [1.07–2.05], p < 0.05) at the radius were associated with a significant increase of fracture risk. At the tibia, only the cortical density was significantly associated with the fracture risk (OR = 1.34 [1.02–2.76], p < 0.05). These results confirm the interest of HR-pQCT measurements for the evaluation of fracture risk, also in women matched for their baseline FRAX score. They also highlight that UDR aBMD contains pertinent informati