2 research outputs found
The fate of cannibalized fundamental-plane ellipticals
Evolution and disruption of galaxies orbiting in the gravitational field of a
larger cluster galaxy are driven by three coupled mechanisms: 1) the heating
due to its time dependent motion in the primary; 2) mass loss due to the tidal
strain field; and 3) orbital decay. Previous work demonstrated that tidal
heating is effective well inside the impulse approximation limit. Not only does
the overall energy increase over previous predictions, but the work is done
deep inside the secondary galaxy, e.g. at or inside the half mass radius in
most cases. Here, these ideas applied to cannibalization of elliptical galaxies
with fundamental-plane parameters. In summary, satellites which can fall to the
center of a cluster giant by dynamical friction are evaporated by internal
heating by the time they reach the center. This suggests that true
merger-produced multiple nuclei giants should be rare. Specifically,
secondaries with mass ratios as small as 1\% on any initial orbit evaporate and
those on eccentric orbits with mass ratios as small as 0.1\% evolve
significantly and nearly evaporate in a galaxian age. Captured satellites with
mass ratios smaller than roughly 1\% have insufficient time to decay to the
center. After many accretion events, the model predicts that the merged system
has a profile similar to that of the original primary with a weak increase in
concentration.Comment: 19 pages, 10 Postscript figures, uses aaspp4.sty. Submitted to
Astrophysical Journa