2,768 research outputs found
The Guppy Effect as Interference
People use conjunctions and disjunctions of concepts in ways that violate the
rules of classical logic, such as the law of compositionality. Specifically,
they overextend conjunctions of concepts, a phenomenon referred to as the Guppy
Effect. We build on previous efforts to develop a quantum model that explains
the Guppy Effect in terms of interference. Using a well-studied data set with
16 exemplars that exhibit the Guppy Effect, we developed a 17-dimensional
complex Hilbert space H that models the data and demonstrates the relationship
between overextension and interference. We view the interference effect as, not
a logical fallacy on the conjunction, but a signal that out of the two
constituent concepts, a new concept has emerged.Comment: 10 page
Quantum Structure in Cognition: Why and How Concepts are Entangled
One of us has recently elaborated a theory for modelling concepts that uses
the state context property (SCoP) formalism, i.e. a generalization of the
quantum formalism. This formalism incorporates context into the mathematical
structure used to represent a concept, and thereby models how context
influences the typicality of a single exemplar and the applicability of a
single property of a concept, which provides a solution of the 'Pet-Fish
problem' and other difficulties occurring in concept theory. Then, a quantum
model has been worked out which reproduces the membership weights of several
exemplars of concepts and their combinations. We show in this paper that a
further relevant effect appears in a natural way whenever two or more concepts
combine, namely, 'entanglement'. The presence of entanglement is explicitly
revealed by considering a specific example with two concepts, constructing some
Bell's inequalities for this example, testing them in a real experiment with
test subjects, and finally proving that Bell's inequalities are violated in
this case. We show that the intrinsic and unavoidable character of entanglement
can be explained in terms of the weights of the exemplars of the combined
concept with respect to the weights of the exemplars of the component concepts.Comment: 10 page
Experimental Evidence for Quantum Structure in Cognition
We proof a theorem that shows that a collection of experimental data of
membership weights of items with respect to a pair of concepts and its
conjunction cannot be modeled within a classical measure theoretic weight
structure in case the experimental data contain the effect called
overextension. Since the effect of overextension, analogue to the well-known
guppy effect for concept combinations, is abundant in all experiments testing
weights of items with respect to pairs of concepts and their conjunctions, our
theorem constitutes a no-go theorem for classical measure structure for common
data of membership weights of items with respect to concepts and their
combinations. We put forward a simple geometric criterion that reveals the non
classicality of the membership weight structure and use experimentally measured
membership weights estimated by subjects in experiments to illustrate our
geometrical criterion. The violation of the classical weight structure is
similar to the violation of the well-known Bell inequalities studied in quantum
mechanics, and hence suggests that the quantum formalism and hence the modeling
by quantum membership weights can accomplish what classical membership weights
cannot do.Comment: 12 pages, 3 figure
A Description Logic of Typicality for Conceptual Combination
We propose a nonmonotonic Description Logic of typicality able to
account for the phenomenon of combining prototypical concepts, an open problem
in the fields of AI and cognitive modelling. Our logic extends the logic of
typicality ALC + TR, based on the notion of rational closure, by inclusions
p :: T(C) v D (“we have probability p that typical Cs are Ds”), coming
from the distributed semantics of probabilistic Description Logics. Additionally,
it embeds a set of cognitive heuristics for concept combination. We show that the
complexity of reasoning in our logic is EXPTIME-complete as in ALC
Recommended from our members
Effects of classification context on categorization in natural categories
The patterns of classification of borderline instances of eight common taxonomic categories were examined under three different instructional conditions to test two predictions: first, that lack of a specified context contributes to vagueness in categorization, and second, that altering the purpose of classification can lead to greater or lesser dependence on similarity in classification. The instructional conditions contrasted purely pragmatic with more technical/quasi-legal contexts as purposes for classification, and these were compared with a no-context control. The measures of category vagueness were between-subjects disagreement and within-subjects consistency, and the measures of similarity based categorization were category breadth and the correlation of instance categorization probability with mean rated typicality, independently measured in a neutral context. Contrary to predictions, none of the measures of vagueness, reliability, category breadth, or correlation with typicality were generally affected by the instructional setting as a function of pragmatic versus technical purposes. Only one subcondition, in which a situational context was implied in addition to a purposive context, produced a significant change in categorization. Further experiments demonstrated that the effect of context was not increased when participants talked their way through the task, and that a technical context did not elicit more all-or-none categorization than did a pragmatic context. These findings place an important boundary condition on the effects of instructional context on conceptual categorization
Quantum Experimental Data in Psychology and Economics
We prove a theorem which shows that a collection of experimental data of
probabilistic weights related to decisions with respect to situations and their
disjunction cannot be modeled within a classical probabilistic weight structure
in case the experimental data contain the effect referred to as the
'disjunction effect' in psychology. We identify different experimental
situations in psychology, more specifically in concept theory and in decision
theory, and in economics (namely situations where Savage's Sure-Thing Principle
is violated) where the disjunction effect appears and we point out the common
nature of the effect. We analyze how our theorem constitutes a no-go theorem
for classical probabilistic weight structures for common experimental data when
the disjunction effect is affecting the values of these data. We put forward a
simple geometric criterion that reveals the non classicality of the considered
probabilistic weights and we illustrate our geometrical criterion by means of
experimentally measured membership weights of items with respect to pairs of
concepts and their disjunctions. The violation of the classical probabilistic
weight structure is very analogous to the violation of the well-known Bell
inequalities studied in quantum mechanics. The no-go theorem we prove in the
present article with respect to the collection of experimental data we consider
has a status analogous to the well known no-go theorems for hidden variable
theories in quantum mechanics with respect to experimental data obtained in
quantum laboratories. For this reason our analysis puts forward a strong
argument in favor of the validity of using a quantum formalism for modeling the
considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure
Feature integration in natural language concepts
Two experiments measured the joint influence of three key sets of semantic features on the frequency with which artifacts (Experiment 1) or plants and creatures (Experiment 2) were categorized in familiar categories. For artifacts, current function outweighed both originally intended function and current appearance. For biological kinds, appearance and behavior, an inner biological function, and appearance and behavior of offspring all had similarly strong effects on categorization. The data were analyzed to determine whether an independent cue model or an interactive model best accounted for how the effects of the three feature sets combined. Feature integration was found to be additive for artifacts but interactive for biological kinds. In keeping with this, membership in contrasting artifact categories tended to be superadditive, indicating overlapping categories, whereas for biological kinds, it was subadditive, indicating conceptual gaps between categories. It is argued that the results underline a key domain difference between artifact and biological concepts
Child protection outcomes of the Australian Nurse Family Partnership Program for Aboriginal infants and their mothers in Central Australia
© 2018 Segal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Background The Nurse Family Partnership Program developed in the USA, designed to improve mother and infant/child outcomes, has reported lower rates of child protection system involvement. The study tested the hypothesis that an adapted Nurse Family Partnership Program implemented in an Aboriginal community in Central Australia (the FPP) would improve Child Protection outcomes. Methods This was a retrospective and prospective cohort study drawing on linked administrative data, including birth registry, primary health care client information system, FPP program data, and child protection data. Participants were children of women eligible for the FPP program (an exposed and a control group of women, eligible but not referred) live-born between 1/3/2009 (program commencement) and 31/12/2015. Child protection data covered all reports, investigations, substantiations and out-of-home care placements from the time of the child’s birth to 31/12/2016. Generalised linear modelling was used to estimate the relative risk (RR) of involvement with child protection and type of involvement (report, investigation, substantiation, out-of-home-care placement) among FPP and control children. Results FPP mothers (n = 291) were on average younger, were more likely to be first-time mothers and experiencing housing instability than control mothers (n = 563). Among younger mothers 20 years, FPP children had statistically significantly lower rates of involvement with child protection (ARRreport = 0.49, 95% CI: 0.29 to 0.82; ARRinvestigation = 0.34, 95% CI: 0.19 to 0.64; ARRsubstantiation = 0.45, 95% CI: 0.21 to 0.96) and experience fewer days in care (ARR = 0.10, 95% CI: 0.02 to 0.48). Among children of first-time mothers, FPP children also had statistically significantly lower rates of involvement with child protection (ARRreport = 0.50, 95% CI: 0.30 to 0.83; ARRinvestigation = 0.36, 95% CI: 0.19 to 0.67; ARRsubstantiation = 0.38, 95% CI: 0.18 to 0.80) and fewer days in care (ARR = 0.06, 95% CI: 0.01 to 0.27). Conclusion Study results suggest a modified Nurse Family Partnership delivered by an Indigenous community-controlled organisation may have reduced child protection system involvement in a highly vulnerable First Nations population, especially in younger or first-time mothers. Testing these results with an RCT design is desirable
Reconstructing the recent visual past: Hierarchical knowledge-based effects in visual working memory
This paper presents two experiments that examine the influence of multiple levels of knowledge on visual working memory (VWM). Experiment 1 focused on memory for faces. Faces were selected from continua that were constructed by morphing two face photographs in 100 steps; half of the continua morphed a famous face into an unfamiliar one, while the other half used two unfamiliar faces. Participants studied six sequentially presented faces each from a different continuum, and at test they had to locate one of these within its continuum. Experiment 2 examined immediate memory for object sizes. On each trial, six images were shown; these were either all vegetables or all random shapes. Immediately after each list, one item was presented again, in a new random size, and participants reproduced its studied size. Results suggested that two levels of knowledge influenced VWM. First, there was an overall central-tendency bias whereby items were remembered as being closer to the overall average or central tokens (averaged across items and trials) than they actually were. Second, when object knowledge was available for the to-be-remembered items (i.e., famous face or typical size of a vegetable) a further bias was introduced in responses
- …