307 research outputs found

    Evaporation and explosion of liquid drops on a heated surface

    Full text link
    The literature pertinent to various aspects of drop evaporation on a heated surface is reviewed. Both the laser shadowgraphic and direct photographic methods are employed to study thermal stability and flow structures in evaporating drops in all heating regimes. It is revealed that four flow regions exist in stable and unstable type drops at low liquid-film type vaporization regime. As the surface temperature is raised, the flow regions reduce to two. In the nucleate-boiling type vaporization regime, the interfacial flow structure changes due to a reduction in the Marangoni number as well as the dielectric constant of the liquid. An evidence of bubble growth in the drops is disclosed. The micro explosion of drops is found to occur in the transition-boiling type heating range. No drop explosion takes place in the spheriodal vaporization regime except when the drop rolls on to a microscratch on the heating surface. It is concluded that the mechanisms for triggering drop explosion include the spontaneous nucleation and growth phenomena and the destabilization of film boiling.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47061/1/348_2004_Article_BF00266263.pd

    Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering

    Full text link
    Nuclear inelastic scattering of synchrotron radiation has been used now since 10 years as a tool for vibrational spectroscopy. This method has turned out especially useful in case of large molecules that contain a M\"ossbauer active metal center. Recent applications to iron-sulfur proteins, to iron(II) spin crossover complexes and to tin-DNA complexes are discussed. Special emphasis is given to the combination of nuclear inelastic scattering and density functional calculations

    First-Principles Calculations of Hyperfine Interactions in La_2CuO_4

    Full text link
    We present the results of first-principles cluster calculations of the electronic structure of La_2CuO_4. Several clusters containing up to nine copper atoms embedded in a background potential were investigated. Spin-polarized calculations were performed both at the Hartree-Fock level and with density functional methods with generalized gradient corrections to the local density approximation. The distinct results for the electronic structure obtained with these two methods are discussed. The dependence of the electric-field gradients at the Cu and the O sites on the cluster size is studied and the results are compared to experiments. The magnetic hyperfine coupling parameters are carefully examined. Special attention is given to a quantitative determination of on-site and transferred hyperfine fields. We provide a detailed analysis that compares the hyperfine fields obtained for various cluster sizes with results from additional calculations of spin states with different multiplicities. From this we conclude that hyperfine couplings are mainly transferred from nearest neighbor Cu^{2+} ions and that contributions from further distant neighbors are marginal. The mechanisms giving rise to transfer of spin density are worked out. Assuming conventional values for the spin-orbit coupling, the total calculated hyperfine interaction parameters are compared to informations from experiments.Comment: 23 pages, 9 figure

    Pharmacokinetics of gemcitabine in non-small-cell lung cancer patients: impact of the 79A>C cytidine deaminase polymorphism

    Get PDF
    To study the impact of the 79A > C polymorphism in the cytidine deaminase (CDA) gene on the pharmacokinetics of gemcitabine and its metabolite 2',2'-difluorodeoxyuridine (dFdU) in non-small-cell lung cancer (NSCLC) patients. Patients (n = 20) received gemcitabine 1,125 mg/m(2) as a 30 min i.v. infusion as part of treatment for NSCLC. Plasma samples were collected during 0-6 h after gemcitabine administration. Gemcitabine and dFdU were quantified by high performance liquid chromatography with ultraviolet detection. The CDA 79A > C genotype was determined with PCR and DNA sequencing. Gemcitabine was rapidly cleared from plasma and undetectable after 3 h. The allele frequency of the 79A > C polymorphism was 0.40. Diplotypes were distributed as A/A n = 8, A/C n = 8 ,and C/C n = 4. No significant differences were found between the different CDA genotypes and gemcitabine or dFdU AUC, clearance, or half-life. The 79A > C polymorphism in the CDA gene does not have a major consistent and signficant impact on gemcitabine pharmacokinetics

    Nature of the bonding in metal-silane σ-complexes

    Get PDF
    The nature of metal silane σ-bond interaction has been investigated in several key systems by a range of experimental and computational techniques. The structure of [Cp′Mn(CO)2(η2-HSiHPh2)] 1 has been determined by single crystal neutron diffraction, and the geometry at the Si atom is shown to approximate a trigonal bipyramid; salient bond distances and angles are Mn−H(1) 1.575(14), Si−H(1) 1.806(14), Si−H(2) 1.501(13) Å, and H(1)−Si−H(2) 148.5(8)°. This complex is similar to [Cp′Mn(CO)2(η2-HSiFPh2)] 2, whose structure and bonding characteristics have recently been determined by charge density studies based on high-resolution X-ray and neutron diffraction data. The geometry at the Si atom in these σ-bond complexes is compared with that in other systems containing hypercoordinate silicon. The Mn−H distances for 1 and 2 in solution have been estimated using NMR T1 relaxation measurements, giving a value of 1.56(3) Å in each case, in excellent agreement with the distances deduced from neutron diffraction. Density functional theory calculations have been employed to explore the bonding in the Mn−H−Si unit in 1 and 2 and in the related system [Cp′Mn(CO)2(η2-HSiCl3)] 3. These studies support the idea that the oxidative addition of a silane ligand to a transition metal center may be described as an asymmetric process in which the Mn−H bond is formed at an early stage, while both the establishment of the Mn−Si bond and also the activation of the η2-coordinated Si−H moiety are controlled by the extent of Mn → σ*(X−Si−H) back-donation, which increases with increasing electron-withdrawing character of the X substituent trans to the metal-coordinated Si−H bond. This delocalized molecular orbital (MO) approach is complemented and supported by combined experimental and theoretical charge density studies: the source function S(r,Ω), which provides a measure of the relative importance of each atom’s contribution to the density at a specific reference point r, clearly shows that all three atoms of the Mn(η2-SiH) moiety contribute to a very similar extent to the density at the Mn−Si bond critical point, in pleasing agreement with the MO model. Hence, we advance a consistent and unifying concept which accounts for the degree of Si−H activation in these silane σ-bond complexes

    New insights into the synergism of nucleoside analogs with radiotherapy

    Get PDF
    Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells
    • …
    corecore