35,890 research outputs found
Far-from-equilibrium initial conditions probed by a nonlocal observable
Using the gauge/gravity duality, we investigate the evolution of an
out-of-equilibrium strongly-coupled plasma from the viewpoint of the two-point
function of scalar gauge-invariant operators with large conformal dimension.
This system is out of equilibrium due to the presence of anisotropy and/or a
massive scalar field. Considering various functions for the initial anisotropy
and scalar field, we conclude that the effect of the anisotropy on the
evolution of the two-point function is considerably more than the effect of the
scalar field. We also show that the ordering of the equilibration time of the
one-point function for the non-probe scalar field and the correlation function
between two points with a fixed separation can be reversed by changing the
initial configuration of the plasma, when the system is out of the equilibrium
due to the presence of at least two different sources like our problem. In
addition, we find the equilibration time of the two-point function to be
linearly increasing with respect to the separation of the two points with a
fixed slope, regardless of the initial configuration that we start with.
Finally we observe that, for larger separations the geodesic connecting two
points on the boundary crosses the event horizon after it has reached its final
equilibrium value, meaning that the two-point function can probe behind the
event horizon
Regular subspaces of a quaternionic Hilbert space from quaternionic Hermite polynomials and associated coherent states
We define quaternionic Hermite polynomials by analogy with two families of
complex Hermite polynomials. As in the complex case, these polynomials
consatitute orthogonal families of vectors in ambient quaternionic
-spaces. Using these polynomials, we then define regular and anti-regular
subspaces of these -spaces, the associated reproducing kernels and the
ensuing quaternionic coherent states
Dynamics of Global Entanglement under Decoherence
We investigate the dynamics of global entanglement, the Meyer-Wallach
measure, under decoherence, analytically. We study two important class of
multi-partite entangled states, the Greenberger-Horne-Zeilinger and the W
state. We obtain exact results for various models of system-environment
interactions (decoherence). Our results shows distinctly different scaling
behavior for these initially entangled states indicating a relative robustness
of the W state, consistent with previous studies.Comment: 5 pages and 5 figure
Massive Gravity Simplified: A Quadratic Action
We present a simplified formulation of massive gravity where the Higgs fields
have quadratic kinetic term. This new formulation allows us to prove in a very
explicit way that all massive gravity theories considered so far inevitably
have Boulware-Deser ghost in non-trivial fluctuations of background metric.Comment: 8 pages, paragraph added proving that Bianchi identity does not imply
vanishing of linearized curvatur
Subtle pH differences trigger single residue motions for moderating conformations of calmodulin
This study reveals the essence of ligand recognition mechanisms by which calmodulin (CaM) controls a variety of Ca2+ signaling processes. We study eight forms of calcium-loaded CaM each with distinct conformational states. Reducing the structure to two degrees of freedom conveniently describes main features of the conformational changes of CaM via simultaneous twist-bend motions of the two lobes. We utilize perturbation-response scanning (PRS) technique, coupled with molecular dynamics simulations. PRS is based on linear response theory, comprising sequential application of directed forces on selected residues followed by recording the resulting protein coordinates. We analyze directional preferences of the perturbations and resulting conformational changes. Manipulation of a single residue reproduces the structural change more effectively than that of single/pairs/triplets of collective modes of motion. Our findings also give information on how the flexible linker acts as a transducer of binding information to distant parts of the protein. Furthermore, by perturbing residue E31 located in one of the EF hand motifs in a specific direction, it is possible to induce conformational change relevant to five target structures. Independently, using four different pKa calculation strategies, we find this particular residue to be the charged residue (out of a total of 52), whose ionization state is most sensitive to subtle pH variations in the physiological range. It is plausible that at relatively low pH, CaM structure is less flexible. By gaining charged states at specific sites at a pH value around 7, such as E31 found in the present study, local conformational changes in the protein will lead to shifts in the energy landscape, paving the way to other conformational states. These findings are in accordance with Fluorescence Resonance Energy Transfer (FRET) measured shifts in conformational distributions towards more compact forms with decreased pH. They also corroborate mutational studies and proteolysis results which point to the significant role of E31 in CaM dynamics
Mechanism, dynamics, and biological existence of multistability in a large class of bursting neurons
Multistability, the coexistence of multiple attractors in a dynamical system,
is explored in bursting nerve cells. A modeling study is performed to show that
a large class of bursting systems, as defined by a shared topology when
represented as dynamical systems, is inherently suited to support
multistability. We derive the bifurcation structure and parametric trends
leading to multistability in these systems. Evidence for the existence of
multirhythmic behavior in neurons of the aquatic mollusc Aplysia californica
that is consistent with our proposed mechanism is presented. Although these
experimental results are preliminary, they indicate that single neurons may be
capable of dynamically storing information for longer time scales than
typically attributed to nonsynaptic mechanisms.Comment: 24 pages, 8 figure
- …