27,277 research outputs found
Exotic Superconducting Phases of Ultracold Atom Mixtures on Triangular Lattices
We study the phase diagram of two-dimensional Bose-Fermi mixtures of
ultracold atoms on a triangular optical lattice, in the limit when the velocity
of bosonic condensate fluctuations is much larger than the Fermi velocity.
We contrast this work with our previous results for a square lattice system
in Phys. Rev. Lett. {\bf 97}, 030601 (2006).
Using functional renormalization group techniques we show that the phase
diagrams for a triangular lattice contain exotic superconducting phases. For
spin-1/2 fermions on an isotropic lattice we find a competition of -, -,
extended -, and -wave symmetry, as well as antiferromagnetic order. For
an anisotropic lattice, we further find an extended p-wave phase. A Bose-Fermi
mixture with spinless fermions on an isotropic lattice shows a competition
between - and -wave symmetry.
These phases can be traced back to the geometric shapes of the Fermi surfaces
in various regimes, as well as the intrinsic frustration of a triangular
lattice.Comment: 6 pages, 4 figures, extended version, slight modification
Numerical analysis of the Iosipescu specimen for composite materials
A finite element analysis of the Iosipescu shear tests for unidirectional and cross-ply composites is presented. It is shown that an iterative analysis procedure must be used to model the fixture-specimen kinematics. The correction factors which are needed to compensate for the nonuniformity of stress distribution in calculating shear modulus are shown to be dependent on the material orthotropic ratio and the finite element loading models. Test section strain distributions representative of typical graphite-epoxy specimens are also presented
Eigenstructure Assignment Based Controllers Applied to Flexible Spacecraft
The objective of this paper is to evaluate the behaviour of a controller designed using a parametric Eigenstructure Assignment method and to evaluate its suitability for use in flexible spacecraft. The challenge of this objective lies in obtaining a suitable controller that is specifically designated to alleviate the deflections and vibrations suffered by external appendages in flexible spacecraft while performing attitude manoeuvres. One of the main problems in these vehicles is the mechanical cross-coupling that exists between the rigid and flexible parts of the spacecraft. Spacecraft with fine attitude pointing requirements need precise control of the mechanical coupling to avoid undesired attitude misalignment. In designing an attitude controller, it is necessary to consider the possible vibration of the solar panels and how it may influence the performance of the rest of the vehicle. The nonlinear mathematical model of a flexible spacecraft is considered a close approximation to the real system. During the process of controller evaluation, the design process has also been taken into account as a factor in assessing the robustness of the system
Fluxon Dynamics of a Long Josephson Junction with Two-gap Superconductors
We investigate the phase dynamics of a long Josephson junction (LJJ) with
two-gap superconductors. In this junction, two channels for tunneling between
the adjacent superconductor (S) layers as well as one interband channel within
each S layer are available for a Cooper pair. Due to the interplay between the
conventional and interband Josephson effects, the LJJ can exhibit unusual phase
dynamics. Accounting for excitation of a stable 2-phase texture arising
from the interband Josephson effect, we find that the critical current between
the S layers may become both spatially and temporally modulated. The spatial
critical current modulation behaves as either a potential well or barrier,
depending on the symmetry of superconducting order parameter, and modifies the
Josephson vortex trajectories. We find that these changes in phase dynamics
result in emission of electromagnetic waves as the Josephson vortex passes
through the region of the 2-phase texture. We discuss the effects of this
radiation emission on the current-voltage characteristics of the junction.Comment: 14 pages, 6 figure
Tunneling of correlated electrons in ultra high magnetic field
Effects of the electron-electron interaction on tunneling into a metal in
ultra-high magnetic field (ultra-quantum limit) are studied. The range of the
interaction is found to have a decisive effect both on the nature of the
field-induced instability of the ground state and on the properties of the
system at energies above the corresponding gap. For a short-range repulsive
interaction, tunneling is dominated by the renormalization of the coupling
constant, which leads eventually to the charge-density wave instability. For a
long-range interaction, there exists an intermediate energy range in which the
conductance obeys a power-law scaling form, similar to that of a 1D Luttinger
liquid. The exponent is magnetic-field dependent, and more surprisingly, may be
positive or negative, i. e., interactions may either suppress or enhance the
tunneling conductance compared to its non-interacting value. At energies near
the gap, scaling breaks down and tunneling is again dominated by the
instability, which in this case is an (anisotropic) Wigner crystal instability.Comment: 4 pages, 2 .eps figure
Interstitial gas and density-segregation in vertically-vibrated granular media
We report experimental studies of the effect of interstitial gas on
mass-density-segregation in a vertically-vibrated mixture of equal-sized bronze
and glass spheres. Sufficiently strong vibration in the presence of
interstitial gas induces vertical segregation into sharply separated bronze and
glass layers. We find that the segregated steady state (i.e., bronze or glass
layer on top) is a sensitive function of gas pressure and viscosity, as well as
vibration frequency and amplitude. In particular, we identify distinct regimes
of behavior that characterize the change from bronze-on-top to glass-on-top
steady-state.Comment: 4 pages, 5 figures, submitted to PRL; accepted in PRE as rapid
communication, with revised text and reference
Orbital symmetry fingerprints for magnetic adatoms in graphene
In this paper, we describe the formation of local resonances in graphene in
the presence of magnetic adatoms containing localized orbitals of arbitrary
symmetry, corresponding to any given angular momentum state. We show that
quantum interference effects which are naturally inbuilt in the honeycomb
lattice in combination with the specific orbital symmetry of the localized
state lead to the formation of fingerprints in differential conductance curves.
In the presence of Jahn-Teller distortion effects, which lift the orbital
degeneracy of the adatoms, the orbital symmetries can lead to distinctive
signatures in the local density of states. We show that those effects allow
scanning tunneling probes to characterize adatoms and defects in graphene.Comment: 15 pages, 11 figures. Added discussion about the multi-orbital case
and the validity of the single orbital picture. Published versio
Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency
We report on a planar metamaterial, the resonant transmission frequency of which does not depend on the polarization and angle of incidence of electromagnetic waves. The resonance results from the excitation of high-Q antisymmetric trapped current mode and shows sharp phase dispersion characteristic to Fano-type resonances of the electromagnetically induced transparency phenomenon
- …